653
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Convoluted fractional differentials of various forms utilizing the generalized Raina's function description with applications

ORCID Icon & ORCID Icon
Pages 432-441 | Received 08 Mar 2022, Accepted 20 Apr 2022, Published online: 05 May 2022

References

  • Seybold HJ, Hilfer R. Numerical results for the generalized Mittag–Leffler function. Fract Calc Appl Anal. 2005;8(2):127–139.
  • Mainardi F. Why the Mittag–Leffler function can be considered the Queen function of the fractional calculus? Entropy. 2020;22(12):1359.
  • Gorenflo R, Mainardi F. The Mittag–Leffler function in the thinning theory for renewal processes. Preprint; 2018. Available from: arXiv:1808.06563
  • Srivastava HM. Some families of Mittag–Leffler type functions and associated operators of fractional calculus (Survey). TWMS J Pure Appl Math. 2016;7:123–145.
  • Srivastava HM, Kilicman A, Abdulnaby ZE, et al. Generalized convolution properties based on the modified Mittag–Leffler function; 2017.
  • Meshram C, Ibrahim RW, Meshram SG, et al. An efficient authentication with key agreement procedure using Mittag–Leffler–Chebyshev summation chaotic map under the multi-server architecture. J Supercomput. 2022;78:4938–4959.
  • Ibrahim RW. Maximize minimum utility function of fractional cloud computing system based on search algorithm utilizing the Mittag–Leffler sum. Int J Anal Appl. 2018;16(1):125–136.
  • Noreen S, Raza M, Liu JL, et al. Geometric properties of normalized Mittag–Leffler functions. Symmetry. 2019;11(1):45.
  • Liu J, Srivastava R. A linear operator associated with the Mittag–Leffler function and related conformal mappings. J Appl Anal Comput. 2018;8(6):1886–1892.
  • Ryapolov PA, Postnikov EB. Mittag–Leffler function as an approximant to the concentrated Ferrofluid's magnetization curve. Fractal Fract. 2021;5(4):147.
  • Shukla AK, Prajapati JC. On a generalization of Mittag–Leffler function and its properties. J Math Anal Appl. 2007;336(2):797–811.
  • Haubold HJ, Mathai AM, Saxena RK. Mittag–Leffler functions and their applications. J Appl Math. 2011;2011:1–52.
  • Chen SB, Rashid S, Hammouch Z, et al. Integral inequalities via Raina's fractional integrals operator with respect to a monotone function. Adv Differ Equ. 2020;2020(1):1–20.
  • Chu Y-M, Rashid S, Singh J. A novel comprehensive analysis on generalized harmonically ψ-convex with respect to Raina's function on fractal set with applications. Math Methods Appl Sci. 2021. doi:10.1002/mma.7346.
  • Rashid S, Hammouch Z, Ashraf R, et al. New computation of unified bounds via a more general fractional operator using generalized Mittag–Leffler function in the kernel. Comput Model Eng Sci. 2021;126(1):359–378.
  • Mohammed PO, Machado JAT, Guirao JLG, et al. Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics. 2021;9(9):1070.
  • Mohammed PO, Goodrich CS, Brzo AB, et al. New classifications of monotonicity investigation for discrete operators with Mittag–Leffler kernel. Math Biosci Eng. 2022;19:4062–4074.
  • Mohammed PO, Goodrich CS, Hamasalh FK, et al. On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag–Leffler kernel. Math Methods Appl Sci. 2022: 1–26. https://doi.org/10.1002/mma.7083
  • Miller SS, Mocanu PT. Differential subordinations: theory and applications. Boca Raton, Florida: CRC Press; 2000.
  • Ruscheweyh S. Convolutions in geometric function theory. Montreal: Les Presses De L'Universite De Montreal; 1982.
  • Gil A, Segura J, Temme NM. Numerical methods for special functions. Philadelphia, USA: Society for Industrial and Applied Mathematics; 2007.
  • Raina RK. On generalized Wright's hypergeometric functions and fractional calculus operators. East Asian Math J. 2015;21:191–203.
  • Sàlàgean GS. Subclasses of univalent functions. In Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981). Berlin: Springer; 1983. p. 362–372. (Lecture notes in mathematics; vol. 1013).
  • Carlson BC, Shaffer DB. Starlike and prestarlike hypergeometric functions. SIAM J Math Anal. 1984;15(4):737–745.
  • Shanmugam TN, Sivasubramanian S, Srivastava HM. Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations. Integral Transforms Spec Funct. 2006;17(12):889–899.
  • Miller SS, Mocanu PT. Subordinants of differential superordinations. Complex Var. 2003;48(10):815–826.
  • Cetinkaya A, Yasar PG. q-Harmonic mappings for which analytic part is q-convex functions of complex order. Hacettepe J Math Stat. 2018;47(4):813–820.
  • Rodriguez RE, Kra I, Gilman JP. Complex analysis: in the spirit of Lipman Bers. Switzerland AG: Springer; 2013.
  • Ibrahim RW, Jahangiri JM, Cloud Computing Center. Conformable differential operator generalizes the Briot–Bouquet differential equation in a complex domain. AIMS Math. 2019;4(6):1582–1595.
  • Jackson FH. XI.–On q-functions and a certain difference operator. Earth Environ Sci Trans R Soc Edinb. 1909;46(2):253–281.
  • Jackson DO, Fukuda T, Dunn O, et al. On q-definite integrals. Quart J Pure Appl Math. 1910;(1):193–203.
  • Ismail MEH, Merkes E, Styer D. A generalization of starlike functions. Complex Var Theory Appl. 1990;14(1–4):77–84.
  • Seoudy TM, Aouf MK. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J Math Inequal. 2016;10(1):135–145.
  • Zainab S, Shakeel A, Imran M, et al. Sufficiency criteria for starlike functions associated with cardioid. J Funct Spaces. 2021;2021:Article ID 9999213.
  • Hadid SB, Ibrahim RW, Momani S. A new measure of quantum starlike functions connected with Julia functions. J Funct Spaces. 2022;2022:Article ID 4865785.
  • Ibrahim RW, Elobaid RM, Obaiys SJ. Geometric inequalities via a symmetric differential operator defined by quantum calculus in the open unit disk. J Funct Spaces. 2020;2020:Article ID 6932739.
  • Ali MA, Budak H, Akkurt A, et al. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021;19(1):440–449.
  • Ibrahim RW, Elobaid RM, Obaiys SJ. A class of quantum Briot–Bouquet differential equations with complex coefficients. Mathematics. 2020;8(5):794.
  • Ibrahim RW, Baleanu D. On quantum hybrid fractional conformable differential and integral operators in a complex domain. Rev Real Acad Cienc Exactas Fis Nat Ser A Mat. 2021;115(1):1–13.
  • Ibrahim RW. Geometric process solving a class of analytic functions using q-convolution differential operator. J Taibah Univ Sci. 2020;14(1):670–677.
  • Aldawish I, Ibrahim RW. A new parametric differential operator generalized a class of d'Alembert's equations. J Taibah Univ Sci. 2021;15(1):449–457.
  • Shah R, Khan H, Baleanu D, et al. A semi-analytical method to solve family of Kuramoto–Sivashinsky equations. J Taibah Univ Sci. 2020;14(1):402–411.