1,004
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Induction of oxidative stress and DNA damage in two common fish species of rivers and reservoirs in Ilorin, Northcentral, Nigeria

, , , , , , , , & show all
Pages 480-494 | Received 07 Sep 2021, Accepted 03 May 2022, Published online: 20 May 2022

References

  • Rappaport SM, Smith MT. Environment and disease risks. Science. 2010;330:460–461.
  • Anifowoshe AT, Roy D, Dutta S, et al. Evaluation of cytogenotoxic potential and embryotoxicity of KRS-cauvery river water in zebrafish (danio rerio). Ecotoxicol Environ Saf. 2022;233:113320.
  • Shuliakevich A, Muz M, Oehlmann J, et al. Assessing the genotoxic potential of freshwater sediments after extensive rain events – lessons learned from a case study in an effluent-dominated river in Germany. Water Res 2022;209:117921.
  • Escher BI, Stapleton HM, Schymanski EL. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367:388–392.
  • Chandra V, Pandav R. Neurological disorders. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P, editor. Disease Control Priorities in Developing Countries, 2nd edition. Oxford University Press and The World Bank; 2006. p. 627–645.
  • Gaziano T, Reddy KS, Paccaud F, et al. Cardiovascular disease. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P, editor. Disease Control Priorities in Developing Countries, 2nd edition. Oxford University Press and The World Bank; 2006. p. 645–663.
  • La Rosa G, Bonadonna L, Lucentini L, et al. Coronavirus in water environments: occurrence, persistence and concentration methods - A scoping review. Water Res. 2020;179:115899.
  • Hemachandra CK, Pathiratne A. Cytogenotoxicity screening of source water, wastewater and treated water of drinking water treatment plants using two in vivo test systems: Allium cepa root based and Nile tilapia erythrocyte based tests. Water Res. 2017;108(180):320–329.
  • Mustapha MK. Fish fauna of oyun reservoir, offa. Nigeria. J Aquat Sci. 2010;25(1):106–114.
  • Sevensson B, Nilsson A, Jonsson E, et al. Fish consumption and exposure to persistent organochlorine compounds, mecury, selenium and methylamines the assessment of aquatic pollution. J Environ Res Develop. 1995;8(2):371–375.
  • Kushwaha B, Pandey S, Sharma S, Srivastava R, Kumar R, et al. In situ assessment of genotoxic and mutagenic potential of polluted river water in channa punctatus and mystus vittatus. Int. Aquat. Res. 2012;4:16.
  • Anifowoshe AT, Oladipo SO, Owolodun OA, et al. Ecogenotoxicological assessments of some selected fish species from Apodu reservoir, malete, North central. Nigeria. Manila J Sci. 2018;11:1–14.
  • Anifowoshe AT, Oladipo SO, Adebayo MO, et al. Induction of micronuclei, base-pair substitution mutation and excision-repair deficient by polluted water from Asa river in Nigeria. AST. 2019;4(2):68–77.
  • Musa SO, Omoregie E. Haematological changes in the mud fish, Clarias gariepinus (burchell) exposed to malachite green. J Aquat Sci. 1999;14:37–42.
  • Mishra R, Shukla SP. Endosulfan effects on muscle malate dehydrogenase of the freshwater catfish Clarias batrachus. Ecotoxicol Environ Saf. 2003;56:425–433.
  • Al-Sabti K. Handbook on genotoxic effects and fish chromosome. Jamova: Jozef Stefan Institute; 1991; 583.
  • Almeida JA, Novelli ELB, Dal PSM, et al. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut. 2001;114:169–175.
  • Klobucar GIV, Stambuk A, Mirjana P, et al. Genotoxicity monitoring of freshwater environments using caged carp (cyprinus carpio). Ecotoxicology. 2010;19:77–84.
  • Jouanneau S, Recoules L, Durand MJ, et al. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2014;49:62–82.
  • Pollock MS, Clarke LMJ, Dubé MG. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ Rev. 2007;15:1–14.
  • Zhao C, Feng W, Quan X, et al. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze river estuary, china. Mar Pollut Bull. 2012;64:1163–1171.
  • Al-Ghanim S, Mahboob S, Seemab S, Sultana T, Sultana, F., et al. Monitoring of trace metals in tissues of wallago attu (lanchi) from the Indus river as an indicator of environmental pollution. Saudi J Biol Sci, 2016;23:72–78.
  • Javed M, Usmani N. An overview of the adverse effects of heavy metal contamination on fish health. Proc Natl Acad Sci, India, Sect B Biol Sci. 2019;89:389–403.
  • Omotosho JS. Ichthyofauna diversity of Asa reservoir, Ilorin. Nigeria. Biosci Biotech. Res. Comm. 1998;10(1):75–81.
  • Oladipo SO, Mustapha MK, Suleiman LK, et al. Fish composition and diversity assessment of Apodu reservoir, malete. Nigeria. IJFAS. 2018;6(2):89–93.
  • Araoye PA. Physical factors and their influence on fish species composition in Asa lake, ilorin. Nigeria Rev. Biol. Trop. Int. J. Trop. Biol. 2009;57(1-2):167–175.
  • Anifowoshe AT, Oyebanji JB, Oladipo OS, Oyeyemi FB, Abdulrahim MY, et al. Histological changes, micronuclei induction and nuclear abnormalities in the peripheral erythrocytes of Clarias gariepinus (burchell 1822) exposed to water sample from Apodu reservoir, Journal of Life and Bio Sciences Research. 2020;1(1):01-07.
  • Oladipo SO, Adeniyi T, Anifowoshe AT. Histological and hepatic enzymes response of Oreochromis niloticus and Clarias anguillaris to pollution in Asa river, ilorin. Journal of Life and Bio Sciences Research. 2020;1(1):16–21.
  • Akinboro A, Peter NA, Rufai MA, et al. Evaluation of Asa river water in ilorin, Kwara state, Nigeria for available pollutants and their effects on mitosis and chromosomes morphology in allium cepa cells. J Appl Sci Environ Manage. 2021;25(1):119–125.
  • Lacaze E, Geffard O, Bony S, et al. Genotoxicity assessment in the amphipod gammarus fossarum by use of the alkaline comet assay. Muta Res/Genet Toxicol Environ Mutagen. 2010;700:32–38.
  • Osman AGM, Abuel-Fadl KF, Kloas W. In situ evaluation of the genotoxic potential of the river Nile: II. detection of DNA strand-breakage and apoptosis in Oreochromis niloticus niloticus (linnaeus, 1758) and Clarias gariepinus (burchell, 1822). Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2012;747:14–21.
  • Bolognesi C, Hayashi M. Micronucleus assay in aquatic animals. Mutagenesis. 2011;26:205–213.
  • Kim IY, Hyun CK. Comparative evaluation of the alkaline comet assay with the micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf. 2006;64:288–297.
  • Vasquez MZ. Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagen. 2009;060.
  • Mitchelmore C, Birmelin C, Livingstone D, et al. Polycyclic and nitroaromatic compounds produce DNA strand breakage in brown trout (salmo trutta) and mussel (mytilus edulis L.) cells. Mutagen. 1997;12:101.
  • Russo C, Rocco L, Morescalchi MA, et al. Assessment of environmental stress by the micronucleus test and the comet assay on the genome of teleost populations from two natural environments. Ecotoxicol Environ Saf. 2004;57:168–174.
  • Frenzilli G, Nigro M, Lyons B. The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res/Rev Mutat Res. 2009;681:80–92.
  • Martins M, Costa PM. The comet assay in environmental risk assessment of marine pollutants: applications, assets and handicaps of surveying genotoxicity in non-model organisms. Mutagenesis. 2015;30:89–106.
  • Oladipo SO, Sunday OJ, Ogunbiyi DC. Occurrence and prevalence of parasites associated with Gnathonemus senegalensis in Apodu reservoir, Malete, Nigeria. Sri Lankan Journal of Biology. 2019;4(1):14–23.
  • Kolawole OA, Ajayi KT, Olayemi AB, et al. Assessment of water quality in Asa river (Nigeria) and its indigenous Clarias gariepinus fish. Int J Environ Res Public Health. 2011;8(11):4332–4352.
  • Idodo-Umeh G. Freshwater fishes of Nigeria (taxonomy, ecological notes diet and utilization). Benin City, Nigeria: Idodo Umeh publishes limited; 2003; 112.
  • Svobodova ZD, Pravda PJ. Unified methods of haematological examination of fish. Vodnany, Czech Republic: Research Institute of Fish Culture and Hydrobiology; 1991; 31.
  • Sovio A, Oikari A. Haematological effect of stress on a teleost. Essex Lucius. J Fish Biol. 1976;8:397–411.
  • Habig WH, Pabst MJ, Jacoby WB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.
  • Claiborne L. Handbook of methods or oxygen radical research. Londan: CRC Press; 1985.
  • Misra HP. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med Thesis. 1967;70:158–169.
  • Glatzle D, Vuilleumier JP, Weber F, et al. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 1974;30:665–667.
  • Carrasco KR, Tilbury KL, Myers MS. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci. 1990;47:2123–2136.
  • Ergene S, Cavas T, Celik A, et al. Evaluation of river water genotoxicity using the piscine micronucleus test. Environ Mol Mutagen. 2007;48:421–429.
  • Bajpayee M, Dhawan A, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25:5–32.
  • Ighalo JO, Adeniyi AG. A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere; 127569.
  • Morrison HA, Smokorowski KE. The applicability of various frameworks and models for assessing the effects of hydropeaking on the productivity of aquatic ecosystems. Can Tech Rep Fish Aquat Sci. 2000: 2322.
  • Akpan AW. The water quality of some tropical freshwater bodies in Uyo (Nigeria) receiving municipal effluents. slaughter-house washings and agricultural land drainage. Environ. 2004;24:49–55.
  • Oshode OA, Bakare AA, Adeogun AO, et al. Ecotoxocological assessment using Clarias gariepinus and microbial characterization of leachate from municipal solid waste landfill. Int J Environ Res Public Health. 2008;2(4):391–400.
  • Kopp R, Lang Š, Brabec T, et al. The influence of physicochemical properties of water on plasma indices in brook trout (salvelinus fontinalis, mitchill) reared under conditions of intensive aquaculture. Acta Vet Brno. 2013;82:427–433.
  • Khan AS, Zhou P, Liu X, et al. Response of vitamins A, E, hematological and serum biochemical markers in Crucian carp (Carassius auratus gibelio) exposed to environmental Pb2+ and Cd2+. Acta Biochim Pol. 2015;62:581–587.
  • Parrino V, Cappello T, Costa G, et al. Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. Eur Zool J. 2018;85:193–199.
  • Osman GMA, AbouelFadl YK, El Reheem ABMA, et al. Blood biomarkers in Nile tilapia Oreochromis niloticus and African catfish Clarias gariepinus to evaluate water quality of the river Nile. J Fish sci. 2018;12:001–015.
  • Sahiti H, Bislimi K, Dalo E, et al. Effect of water quality in hematological and biochemical parameters in blood of common carp (cyprinus carpio) in two lakes of Kosovo. NESciences. 2018;3(3):323–332.
  • Coles EH. Veterinary clinical pathology. W.B. Saunders, Philadelphia. 1986;10-42.
  • Vergolyas M, Myrtaziev E, Vikhliaieva M, et al. Hematological indicators of hydrobionts as a biomarker of anthropogenic pollution of the aquatic environment. Int J Nat Resour Ecology Manage. 2020;5(3):115–118.
  • Slaninova A, Smutna M, Modra H, et al. A review: oxidative stress in fish induced by pesticides. Neuroendocrinol Lett. 2009;30(1):2–12.
  • Sevcikova M, Modra H, Slaninova A, et al. Metals as a cause of oxidative stress in fish: a review. Veterinární Medicína. 2011;56(11):537–546.
  • Farombi EO, Adelowo OA, Ajimoko YR. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African Cat fish (Clarias gariepinus) from Nigeria ogun river. Int J Environ Res Public Health. 2007;4(2):158–165.
  • Arojojoye OA, Adeosun AM. Effect of environmental pollution on oxidative stress biomarkers in African cat fish (Clarias gariepinus) from asejire river in Oyo,state. J Environ Occupat Sci. 2016a;5:4.
  • Arojojoye OA, Nwaechefu OO, Ajiboye JA, et al. Induction of oxidative stress in Clarias gariepinus from eleyele river in Nigeria. Adv Environ Res. 2016;5(3):179–187.
  • Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull. 2001;42:656–666.
  • McCord JM. Effects of positive iron status at a cellular level. Nutr Rev. 1996;54:85–88.
  • Isamah GK, Asagba SO, Coker HA. Comparative evaluation of the levels of some antioxidant enzymes and lipid peroxidation in different fish species in Two rivers in the western Niger delta. Bull Environ Contam Toxicol. 2000;65:351–356.
  • Lenartova V, Holovska K, Pedrajas JR, et al. Antioxidant and detoxifying fish enzymes biomarkers of river pollution. Vet J. 1997;147:18–30.
  • Akpakpan EI, Akpanyung EO. Biomarkers of oxidative stress and histopathological studies in fish from ibaka and ifiayong rivers, akwa ibom state, Nigeria. World Appl Sci J. 2014;32(7):1209–1218.
  • Pandey S, Parvez S, Ahamd Ansari R, et al. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, channa punctata bloch. Chem Biol Interact. 2008;174(3):183–192.
  • Ali FK, El-Shehawi AM, Seehy MA. Micronucleus test in fish genome: A sensitive monitor for aquatic pollution. AfrJ Biotech. 2008;7(5):606–612.
  • Xian H, Tang M, Chen Y, et al. Indigenous fish–based assessment of genotoxic potentials of the helong reservoir in guangzhou, China. Env Toxicol Chem. 2021: 1–9.
  • Kligerman AD. Fishes as biological detectors of the effects of genotoxic agents. In: J Heddle, editor. Mutagenicity: New horizons in genetic toxicology. New York: Academic Press; 1982. p. 435–456.
  • Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25(1):5–32.
  • Hariri M, Mirvaghefib A, Farahmandb H, et al. In situ assessment of karaj river genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout ( salmo trutta fario ) Environ Toxicol Pharmacol 2018;58:59–69.
  • Frenzilli G, Nigro M, Lyons B. The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research. 2009;681:80–92.
  • Schnurstein A, Braunbeck T. Tail moment versus tail length—application of an In vitro version of the comet assay in biomonitoring for genotoxicity in native surface waters using primary hepatocytes and gill cells from zebrafish (danio rerio). Ecotoxicol Environ Saf. 2001;49:187–196.
  • Cavas T, Konen S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis. 2007;22:263–268.
  • Nwani CD, Nagpure NS, Kumar R, et al. DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, channa punctatus. Environ Toxicol Pharmacol. 2013;36:539–547.
  • Lopes AC, Peixe TS, Mesas AE, et al. Lead exposure and oxidative stress: A systematic review. Rev Environ Contam Toxicol. 2016;236:193–238.
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum 2006;87:1.
  • Tamele IJ, Loureiro PV Lead, mercury and cadmium in fish and shellfish from the Indian ocean and Red Sea (African countries): Public health challenges. J Mar Sci Eng. 2020;8:344.