733
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation into the Performances of Water Adsorption in Kaolinite Clay: Implications for Occupational Pneumoconiosis Prevention and Treatment

ORCID Icon, & ORCID Icon
Pages 535-549 | Received 03 Nov 2021, Accepted 16 May 2022, Published online: 01 Jun 2022

References

  • Feng D, Li XF, Wang XZ, et al. Water adsorption and its impact on the pore structure characteristics of shale clay. Appl Clay Sci. 2018;155:126–138.
  • McCutcheon AL, Barton WA, Wilson MA. Characterization of water adsorbed on bituminous coals. Energ Fuel. 2003;17:107–112.
  • Wang TY, Tian SC, Li GS, et al. Experimental study of water vapor adsorption behaviors on shale. Fuel. 2019;248:168–177.
  • Chen J, Gai HF, Xiao QL. Effects of composition and temperature on water sorption in overmature Wufeng-Longmaxi shales. Int J Coal Geol. 2021;234:103673.
  • Tang X, Ripepi N, Valentine KA, et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis. Fuel. 2017;209:606–614.
  • Gasparik M, Bertier P, Gensterblum Y, et al. Geological controls on the methane storage capacity in organic-rich shales. Int J Coal Geol. 2014;123:34–51.
  • Hu Y, Devegowda D, Striolo A, et al. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability. SPE J. 2014;2(1):112–124.
  • Korb JP, Nicot B, Louis-Joseph A, et al. Dynamics and wettability of oil and water in oil shales. J Phys Chem C. 2014;118:23212–23218.
  • Zolfaghari A, Dehghanpour H, Holyk J. Water sorption behaviour of gas shales: I. Role of clays. Int J Coal Geol. 2017;179:130–138.
  • Hatch CD, Wiese JS, Crane CC, et al. Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir. 2012;28:1790–1803.
  • Feng D, Li XF, Li J, et al. Water adsorption isotherm and its effect on pore size distribution of clay minerals. J China Univ Pet. 2018;42(2):110–118.
  • Likos WJ, Lu N. Water vapor sorption behavior of smectite-kaolinite mixtures. Clay Clay Miner. 2002;50(5):553–561.
  • Martin RT. Water vapor sorption on kaolinite: entropy of adsorption. Clay Clay Miner. 1960;8:102–114.
  • Ross DJK, Bustin RM. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Petrol Geol. 2009;26:916–927.
  • Svabova M, Weishauptova Z, Pribyl O. Water vapour adsorption on coal. Fuel. 2011;90:1892–1899.
  • Kuila U, Prasad M. Specific surface area and pore-size distribution in clays and shales. Geophys Prospect. 2013;61:341–362.
  • Duan S, Li GD. Equilibrium and kinetics of water vapor adsorption on shale. J Energ Resour-ASME. 2018;140:122001-1–122001-10.
  • Song X, Wang LA, Ma X, et al. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl Surf Sci. 2017;396:870–878.
  • Ridha FN, Webley PA. Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Micropor Mesopor Mat. 2010;132:22–30.
  • Zhou X, Yi HH, Tang XL, et al. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem Eng J. 2012;200-202:399–404.
  • Zhou L, Feng QY, Qin Y. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix. J China Coal Soc. 2011;36(8):1307–1311.
  • Tang X, Wang ZF, Ripepi N, et al. Adsorption affinity of different types of coal: Mean isosteric heat of adsorption. Energ Fuel. 2015;29:3609–3615.
  • Chen YY, Furmann A, Mastalerz M, et al. Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel. 2014;116:538–549.
  • Pan Y, Hui D, Luo PY, et al. Experimental investigation of the geochemical interactions between supercritical CO2 and shale: Implications for CO2 storage in gas-bearing shale formations. Energ Fuel. 2018;32:1963–1978.
  • Gu M, Xian XF, Duan S, et al. Influences of the composition and pore structure of a shale on its selective adsorption of CO2 over CH4. J Nat Gas Sci Eng. 2017;46:296–306.
  • Harrou A, Gharibi E, Nasri H, et al. Thermodynamics and kinetics of the removal of methylene blue from aqueous solution by raw kaolin. SN Appl Sci. 2020;2(2):1–11.
  • Broom DP, Thomas KM. Gas adsorption by nanoporous materials: future applications and experimental challenges. Mrs Bull. 2013;38(5):412–421.
  • Gelb LD, Gubbins KE, Radhakrishnan R, et al. Phase separation in confined systems. Rep Prog Phys. 1999; 62: 1573.
  • Pan Y, Hui D, Luo PY, et al. Experimental investigation of the geochemical interactions between supercritical CO2 and shale: Implications for CO2 storage in gas-bearing shale formations. Energ Fuel. 2018;32:1963–1978.
  • Huo PL, Zhang DF, Yang Z, et al. CO2 geological sequestration: displacement behavior of shale gas methane by carbon dioxide injection. Int J Greenh Gas Con. 2017;66:48–59.
  • Niu Y, Yue CT, Li SY, et al. Influencing factors and selection of CH4 and CO2 adsorption on Silurian shale in Yibin. Sichuan Province of China. Energ Fuel. 2018;32(3):3202–3210.
  • Zhou SW, Xue HQ, Guo W, et al. Supercritical isothermal adsorption characteristics of shale gas based on gravimetric method. J China Coal Soc. 2016;41(11):2806–2812.
  • Ji LM, Ma XQ, Xia YQ, et al. Relationship between methane adsorption capacity of clay minerals and micropore volume. Nat Gas Geosci. 2014;25(2):141–152.
  • Charriere D, Behra P. Water sorption on coals. J Colloid Interf Sci. 2010;344:460–467.
  • Bahadur J, Contescu CI, Rai DK, et al. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering. Carbon N Y. 2017;111:681–688.
  • Foley NJ, Thomas KM, Forshaw PL, et al. Kinetics of water vapor adsorption on activated carbon. Langmuir. 1997;13:2083–2089.
  • Brennan JK, Thomson KT, Gubbins KE. Adsorption of water in activated carbons: Effects of pore blocking and connectivity. Langmuir. 2002;18:5438–5447.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051–1069.
  • Tang X, Ripepi N, Luxbacher K, et al. Adsorption models for methane in shales: review, comparison, and application. Energ Fuel. 2017;10:10787–10801.
  • Deng H, Yi HH, Tang XL, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem Eng J. 2012;188:77–85.
  • Xiong J, Liu XJ, Liang LX, et al. Adsorption behavior of methane on kaolinite. Ind Eng Chem Res. 2017;56:6238–6299.
  • Duan S. A thermodynamics study of CO2 and CH4 adsorption on Sichuan Basin shale. Chongqing, Chongqing University, 2017.
  • Nie BS, He XQ, Wang EY. Surface free energy of coal and its calculation. J Taiyuan Univ Technol. 2000;31(4):346–348.
  • Sircar S. Isosteric heats of multicomponent gas adsorption on heterogeneous adsorbent. Langmuir. 1991;7:3065–3069.
  • Chakraborty A, Saha BB, Koyama S. On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments. Appl Phys Lett. 2006;89:171901.
  • Chowdhury S, Saha P. Insight into adsorption thermodynamics. Thermodynamics, InTech, 2003.
  • Myers AL. Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules. Colloid Surface A. 2004;241:9–14.
  • Keffer D, Davis HT, Mccormick AV. The effect of nanopore shape on the structure and isotherms of adsorbed fluids. Adsorption. 1996;2:9–21.
  • Wang HY, Wang BD, Li JH, et al. Adsorption equilibrium and thermodynamic of acetaldehyde/acetone on activated carbon. Sep Purif Technol. 2019;209:535–541.