1,424
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Hierarchically porous NiO microspheres and their nanocomposites with exfoliated carbon as electrode materials for supercapacitor applications

, , ORCID Icon, , , , & ORCID Icon show all
Pages 575-584 | Received 14 Dec 2021, Accepted 24 May 2022, Published online: 04 Jun 2022

References

  • Prabunathan P, Sethuraman K, Alagar M. Mno 2-doped, polyaniline-grafted rice husk ash nanocomposites and their electrochemical capacitor applications. RSC Adv. 2014;4:47726–47734.
  • Dr QP, Song Y, Lv H, et al. Ammonium-ion storage using electrodeposited manganese oxides. Angew Chem. 2020;60:5718–5722.
  • Abas N, Kalair A, Khan N. Review of fossil fuels and future energy technologies. Futures. 2015;69:31–49.
  • Sharma K, Arora A, Tripathi SK. Review of supercapacitors: materials and devices. J Energy Stor. 2019;21:801–825.
  • Dong R, Song Y, Yang D, et al. Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. J Mater Chem A. 2020;8:1176–1183.
  • Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 2019;1:2817–2827.
  • Buiel E, Development of lead-carbon hybrid battery/super capacitors, Proc. Advanced Capacitor World Summit, July 17, 19 2006.
  • Lu Z, Chang Z, Zhu W, et al. Beta-phased Ni (OH) 2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem Commun. 2011;47:9651–9653.
  • Chavan UJ, Yadav AA. Electrochemical behavior of spray deposited mixed nickel manganese oxide thin films for supercapacitor applications. J Mater Sci Mater Electron. 2017;28:4958–4964.
  • Gu T-T, Wu X-M, Dong Y-M, et al. Novel photoelectrochemical hydrogen peroxide sensor based on hemin sensitized nanoporous NiO based photocathode. J Electroanal Chem. 2015;759:27–31.
  • Ferreira FF, Avendaño E. Reversible electronic charge transfer between Au nanoparticles and electrochromic NiO matrices upon electrochemical cycling. J Phys Chem C. 2007;111:16608–16612.
  • Venter A, Botha JR. Optical and electrical properties of NiO for possible dielectric applications. S Afr J Sci. 2011;107:1–6.
  • Jlassi M, Sta I, Hajji M, et al. Synthesis and characterization of nickel oxide thin films deposited on glass substrates using spray pyrolysis. Appl Surf Sci. 2014;308:199–205.
  • Xu C, Hong K, Liu S, et al. A novel wet chemical route to NiO nanowires. J Cryst Growth. 2003;255:308–312.
  • Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater. 2007;53:117–166.
  • Alagiri M, Ponnusamy S, Muthamizhchelvan C. Synthesis and characterization of NiO nanoparticles by sol–gel method. J Mater Sci Mater Electron. 2012;23:728–732.
  • Li J, Yan R, Xiao B, et al. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels. 2008;22:16–23.
  • San X, Li M, Liu D, et al. A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J Alloys Compd. 2018;739:260–269.
  • Qiao H, Wei Z, Yang H, et al. Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater. 2009.
  • Chandra S, Kumar A, Tomar PK. Synthesis of Ni nanoparticles and their characterizations. J Saudi Chem Soc. 2014;18:437–442.
  • Wu M-S, Huang Y-A, Yang C-H, et al. Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrogen Energy. 2007;32:4153–4159.
  • Wang Y-g, Xia Y-y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta. 2006;51:3223–3227.
  • Anandan b, Rajendran V. Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater Sci Semicond Process. 2011;14:43–47.
  • Liu KC, Anderson MA. Porous nickel oxide/nickel films for electrochemical capacitors. J Electrochem Soc. 1996;143:124.
  • Xing W, Li F, Yan Z-f, et al. Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources. 2004;134:324–330.
  • Zhang Y, Gui Y, Wu X, et al. Preparation of nanostructures NiO and their electrochemical capacitive behaviors. Int J Hydrogen Energy. 2009;34:2467–2470.
  • Zhu T, Wang Z, Ding S, et al. Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 2011;1:397–400.
  • Jin J, Qiao X, Zhou F, et al. Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl Mater Interfaces. 2017;9:17317–17325.
  • Rafiq S, Aadil M, Warsi MF, et al. Nio nanoparticles and their nanohybrid with flat rGO sheets: As an ideal electroactive material for hybrid capacitor applications. Ceram Int. 2022.
  • Zou Y, Cai C, Xiang C, et al. Simple synthesis of core-shell structure of Co–Co3O4@ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim Acta. 2018;261:537–547.
  • Lv H, Pan Q, Song Y, et al. A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano Micro Letters. 2020;12:118.
  • Soneda Y, Toyoda M, Tani Y, et al. Electrochemical behavior of exfoliated carbon fibers in H2SO4 electrolyte with different concentrations. J Phys Chem Solids. 2004;65:219–222.
  • Toyoda M, Tani Y, Soneda Y. Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte. Carbon. 2004;42:2833–2837.
  • Qin Y, Zhang F, Chen Y, et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C. 2012;116:11994–12000.
  • Aadil M, Zulfiqar S, Shahid M, et al. Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. J Alloys Compd. 2020;844:156062.
  • Barzinjy AA, Hamad SM, Aydın S, et al. Green and eco-friendly synthesis of nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J Mater Sci Mater Electron. 2020;31:11303–11316.
  • Theivasanthi T, Alagar MJ. An insight analysis of nano sized powder of jackfruit seed. 2011.
  • Park JY, Lee YJ, Jun KW, et al. Chemical synthesis and characterization of highly oil dispersed MgO nanoparticles. J Ind Eng Chem. 2006;12:882–887.
  • Shuihab A, Khalf S. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si, AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 020026.
  • Scheibe B, Tadyszak K, Jarek M, et al. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl Surf Sci. 2019;479:216–224.
  • Sabeeh H, Zulfiqar S, Aadil M, et al. Flake-like MoS2 nano-architecture and its nanocomposite with reduced Graphene Oxide for hybrid supercapacitors applications. Ceram Int. 2020;46:21064–21072.
  • Aadil M, Shaheen W, Warsi MF, et al. Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. J Alloys Compd. 2016;689:648–654.
  • Aadil M, Zulfiqar S, Sabeeh H, et al. Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids. Ceram Int. 2020;46:17836–17845.
  • Shakir I, Almutairi Z, Shar SS, et al. Nickel hydroxide nanoparticles and their hybrids with carbon nanotubes for electrochemical energy storage applications. Results Phys. 2020;17:103117.
  • Li X, Dhanabalan A, Wang C. Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. J Power Sources. 2011;196:9625–9630.
  • Wang G, Ling Y, Qian F, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. J Power Sources. 2011;196:5209–5214.
  • Khan M, Warsi M, Zulfiqar S. Journal pre-proof nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceram Int. 2022;48(2):2345–2354.
  • Khan M, Zulfiqar S, Shahid M, et al. Fabrication of rationally designed CNTs supported binary nanohybrid with multiple approaches to boost electrochemical performance. J Electroanal Chem. 2021;884.
  • Premathilake D, Outlaw RA, Parler SG, et al. Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum. Carbon. 2017;111:231–237.
  • Xu J, Wu L, Liu Y, et al. NiO-rGO composite for supercapacitor electrode. Surf Interfaces. 2019;18:100420.
  • Bu Y, Wang S, Jin H, et al. Synthesis of porous NiO/reduced graphene oxide composites for supercapacitors. J Electrochem Soc. 2012;159:A990–A994.
  • Chernysheva D, Pudova L, Popov Y, et al. Non-isothermal decomposition as efficient and simple synthesis method of NiO/C nanoparticles for asymmetric supercapacitors. Nanomaterials. 2021;11:187.
  • Pang H, Ma Y, Li G, et al. Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans. 2012;41:13284–13291.