1,091
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A DFT study of nonlinear optical response of supersalt (Al(BH4)3) doped boron nitride

, , , , &
Pages 621-631 | Received 20 Dec 2021, Accepted 18 Jun 2022, Published online: 29 Jun 2022

References

  • Ward J, Miller C. Measurements of nonlinear optical polarizabilities for twelve small molecules. Phys Rev A. 1979;19(2):826.
  • Menzel R. Photonics: linear and nonlinear interactions of laser light and matter. Springer Berlin, Heidelberg: Springer Science & Business Media; 2013.
  • Liang F, et al. Molecular construction using (C3N3O3) 3–anions: analysis and prospect for inorganic metal cyanurates nonlinear optical materials. Cryst Growth Des. 2017;17(7):4015–4020.
  • Di Bella S, et al. Synthesis, characterization, optical spectroscopic, electronic structure, and second-order nonlinear optical (NLO) properties of a novel class of donor− acceptor bis (salicylaldiminato) nickel (II) Schiff base NLO chromophores. J Am Chem Soc. 1997;119(40):9550–9557.
  • Zahid S, et al. Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. J Mol Model. 2021;27(9):1–14.
  • ul Ain Q, et al. Designing of benzodithiophene acridine based Donor materials with favorable photovoltaic parameters for efficient organic solar cell. Computational and Theoretical Chemistry. 2021;1200:113238.
  • Shehzad RA, et al. Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: insights from molecule to material level. J Mol Model. 2021;27(1):1–10.
  • Shehzad RA, et al. Electro-Optical and Charge Transport Properties of Chalcone Derivatives Using a Dual Approach from Molecule to Material Level Simulations. Computational and Theoretical Chemistry. 2021;1203:113349.
  • Rasool A, et al. Designing of benzodithiophene (BDT) based non-fullerene small molecules with favorable optoelectronic properties for proficient organic solar cells. Computational and Theoretical Chemistry. 2021;1203:113359.
  • Naseem Z, et al. Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chem Phys Lett. 2021;769:138427.
  • Naeem N, et al. Molecular Engineering Strategy of Naphthalimide Based Small Donor Molecules for High Performance Organic Solar Cells. Computational and Theoretical Chemistry. 2021;1204:113416.
  • Khan AU, et al. DFT study of superhalogen (AlF4) doped boron nitride for tuning their nonlinear optical properties. Optik (Stuttg). 2021;231:166464.
  • Khan AU, et al. DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties. RSC Adv. 2021;11(14):7779–7789.
  • Ishaq M, et al. DFT study of superhalogen-doped borophene with enhanced nonlinear optical properties. J Mol Model. 2021;27(6):1–11.
  • Fatima R, et al. Exploring the potential of tetraazaacene derivatives as photovoltaic materials with enhanced photovoltaic parameters. Int J Quantum Chem. 2022;122:e26817.
  • Chen C, et al. Nonlinear optical borate crystals: Principals and applications. Weinheim Wiley-VCH-Verl: John Wiley & Sons; 2012.
  • Champagne B, et al. Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc. 2012;134(19):8101–8103.
  • Gao F-W, Xu H-L, Su Z-M. The inner-induced effects of YCN in C 76 on the structures and nonlinear optical properties. J Mol Model. 2016;22(8):1–7.
  • Wang Y-F, et al. Hopping of Li@ AR (AR= benzene and naphthalene) between electride and lithium salt configurations brings considerably different first hyperpolarizabilities: Candidate for high-performance nonlinear optical molecular switches. J Phys Chem C. 2019;123(39):24248–24254.
  • Janjua MRSA, et al. Prediction of remarkably large second-order nonlinear optical properties of organoimido-substituted hexamolybdates. J Phys Chem A. 2009;113(15):3576–3587.
  • Zhong R-L, et al. Role of excess electrons in nonlinear optical response. J Phys Chem Lett. 2015;6(4):612–619.
  • Shafiq S, et al. DFT study of OLi3 and MgF3 Doped Boron Nitride with Enhanced Nonlinear Optical Behavior. J Mol Struct. 2021;1251:131934.
  • Moon WH, Son MS, Hwang HJ. Theoretical study on structure of boron nitride fullerenes. Appl Surf Sci. 2007;253(17):7078–7081.
  • Raza Ayub A, et al. Super alkali (OLi3) doped boron nitride with enhanced nonlinear optical behavior. Journal of Nonlinear Optical Physics & Materials. 2020;29(01n02):2050004.
  • Li J, He T, Yang G. An all-purpose building block: B 12 N 12 fullerene. Nanoscale. 2012;4(5):1665–1670.
  • Graudejus O, et al. Room Temperature Syntheses of AuF6-and PtF6-Salts, Ag+ AuF6-, Ag2+ PtF62-, and Ag2+ PdF62-, and an Estimate for E (MF6-)[M= Pt, Pd]. Inorg Chem. 1999;38(10):2503–2509.
  • Gutsev GL, et al. Origin of the unusual stability of MnO4−. Chem Phys Lett. 1999;312(5-6):598–605.
  • Wu MM, et al. Manganese-based magnetic superhalogens. Angew Chem. 2011;123(11):2616–2620.
  • Schlesinger H, Sanderson RT, Burg A. Metallo borohydrides. I. Aluminum borohydride. J Am Chem Soc. 1940;62(12):3421–3425.
  • Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The m PW and m PW1PW models. J Chem Phys. 1998;108(2):664–675.
  • Frisch M, et al. gaussian 09, Revision d. 01, Gaussian. Inc. Wallingford (CT); 2009. 201.
  • Dennington R, et al. Semichem Inc. Shawnee Mission KS, GaussView, Version; 2009. 5.
  • Shehzad RA, et al. Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Computational and Theoretical Chemistry. 2020;1181:112833.
  • Shehzad RA, et al. Enhanced linear and nonlinear optical response of superhalogen (Al7) doped graphitic carbon nitride (g-C3N4). Optik (Stuttg). 2021;226:165923.
  • Tenderholt A. (2019). PyMOlyze: a program to analyze quantum chemistry calculations, version 2.0.
  • Ans M, et al. Tuning opto-electronic properties of alkoxy-induced based electron acceptors in infrared region for high performance organic solar cells. J Mol Liq. 2020;298:111963.
  • Adeel M, et al. Exploration of CH⋯ F & CF⋯ H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 2021;11(14):7766–7778.
  • Civalleri B, et al. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm. 2008;10(4):405–410.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1-3):51–57.
  • Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620.
  • Manzoor F, et al. Theoretical calculations of the optical and electronic properties of dithienosilole-and dithiophene-based donor materials for organic solar cells. ChemistrySelect. 2018;3(5):1593–1601.
  • Sutradhar T, Misra A. Role of Electron-Donating and Electron-Withdrawing Groups in Tuning the Optoelectronic Properties of Difluoroboron–Napthyridine Analogues. J Phys Chem A. 2018;122(16):4111–4120.
  • Muhammad S, et al. Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. Journal of Theoretical and Computational Chemistry. 2019;18(06):1950030.
  • Li Y, Ullrich C. Time-dependent transition density matrix. Chem Phys. 2011;391(1):157–163.
  • McWeeny R. Some recent advances in density matrix theory. Rev Mod Phys. 1960;32(2):335.
  • Medjahed S, et al. Computational study of molecular electrostatic potential, drug likeness screening and structure-activity/property relationships of thiazolidine-2, 4-dione derivatives. Journal of Bionanoscience. 2016;10(2):118–126.