663
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Mechanical and microstructure characteristics of alkali-activated coal ash with α-phase ultrafine Al2O3 nanoparticles and basalt fibres

Pages 646-659 | Received 25 Sep 2021, Accepted 03 Jul 2022, Published online: 14 Jul 2022

References

  • Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–130.
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Cleaner Prod. 2011;19(9-10):1080–1090.
  • Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu Rev Mater Res. 2014;44:299–327.
  • Neupane K, Hadigheh SA. Sodium hydroxide-free geopolymer binder for prestressed concrete applications. Constr Build Mater. 2021;293:123397.
  • Adesina A. Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Dispos Sustain Energy. 2020;2:165–175.
  • Duxson P, Fernández-Jiménez A, Provis JL, et al. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–2933.
  • Zhuang XY, Chen L, Komarneni S, et al. Fly ash-based geopolymer: clean production, properties and applications. J Cleaner Prod. 2016;125:253–267.
  • Zhang P, Zheng Y, Wang K, et al. A review on properties of fresh and hardened geopolymer mortar. Compos B Eng. 2018;152:79–95.
  • Davoodabadi M, Liebscher M, Hampel S, et al. Multi-walled carbon nanotube dispersion methodologies in alkaline media and their influence on mechanical reinforcement of alkali-activated nanocomposites. Compos B Eng. 2021;209:108559.
  • Arulrajah A, Kua T-A, Horpibulsuk S, et al. Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units. Constr Build Mater. 2016;114:400–406.
  • Phoo-ngernkham T, Sata V, Hanjitsuwan S, et al. High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Constr Build Mater. 2015;98:482–488.
  • Raza A, Manalo AC, Rafique U, et al. Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals. Compos Struct. 2021;268:113968.
  • Raza A, Rashedi A, Rafique U, et al. On the structural performance of recycled aggregate concrete columns with glass fiber-reinforced composite bars and hoops. Polymers (Basel). 2021;13(9):1508.
  • Phummiphan I, Horpibulsuk S, Rachan R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J Hazard Mater. 2018;341:257–267.
  • Hoy M, Rachan R, Horpibulsuk S, et al. Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement – fly ash geopolymer. Constr Build Mater. 2017;144:624–634.
  • Mo KH, Alengaram UJ, Jumaat MZ. Structural performance of reinforced geopolymer concrete members: a review. Constr Build Mater. 2016;120:251–264.
  • Visintin P, Mohamed Ali MS, Albitar M, et al. Shear behaviour of geopolymer concrete beams without stirrups. Constr Build Mater. 2017;148:10–21.
  • Wang Y, Hu S, He Z. Mechanical and fracture properties of geopolymer concrete with basalt fiber using digital image correlation. Theor Appl Fract Mech. 2021;112:102909.
  • Pham TM. Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Constr Build Mater. 2020;245:118422.
  • Timakul P, Rattanaprasit W, Aungkavattana P. Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram Int. 2016;42(5):6288–6295.
  • Ren D, Yan C, Duan P, et al. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr Build Mater. 2017;134:56–66.
  • Ding Y, Bai Y-L. Fracture properties and softening curves of steel fiber-reinforced slag-based geopolymer mortar and concrete. Materials (Basel). 2018;11(8):1445.
  • Guo X, Pan X. Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Constr Build Mater. 2018;179:633–641.
  • Yang M, Paudel SR, Gao ZJ. Snow-proof roadways using steel fiber–reinforced fly ash geopolymer mortar–concrete. J Mater Civ Eng. 2021;33(2):04020444.
  • Riahi S, Nemati A, Khodabandeh AR, et al. Investigation of interfacial and mechanical properties of alumina-coated steel fiber reinforced geopolymer composites. Constr Build Mater. 2021;288:123118.
  • Zhang P, Wang K, Wang J, et al. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int. 2020;46(12):20027–20037.
  • Liu Y, Shi C, Zhang Z, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem Concr Compos. 2020;112:103665.
  • Ali N, Canpolat O, Aygörmez Y, et al. Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Constr Build Mater. 2020;251:118976.
  • Punurai W, Kroehong W, Saptamongkol A, et al. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr Build Mater. 2018;186:62–70.
  • Guo L, Wu Y, Xu F, et al. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos B Eng. 2020;183:107689.
  • Kheradmand M, Mastali M, Abdollahnejad Z, et al. Experimental and numerical investigations on the flexural performance of geopolymers reinforced with short hybrid polymeric fibres. Compos B Eng. 2017;126:108–118.
  • Khandelwal S, Rhee KY. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface. Compos B Eng. 2020;192:108011.
  • Chen X, Zhang J, Lu M, et al. Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Constr Build Mater. 2022;314:125650.
  • Kaze CR, Lecomte-Nana GL, Adesina A, et al. Influence of mineralogy and activator type on the rheology behaviour and setting time of laterite based geopolymer paste. Cem Concr Compos. 2022;126:104345.
  • Ramesh M, Palanikumar K, Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev. 2017;79:558–584.
  • Ramesh M, Deepa C, Rajesh Kumar L, et al. Life-cycle and environmental impact assessments on procedureing of plant fibres and its bio-composites: a critical review. J Ind Text. 2020. DOI:10.1177/1528083720924730
  • Adesina A. Durability enhancement of concrete using nanomaterials: an overview. Materials Science Forum. Trans Tech Publ; 2019.
  • Adesina A. Nanomaterials in cementitious composites: review of durability performance. J Build Pathol Rehabil. 2020;5(1):1–9.
  • Gülşan ME, Alzeebaree R, Rasheed AA, et al. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr Build Mater. 2019;211:271–283.
  • Assaedi H, Alomayri T, Kaze CR, et al. Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3. Constr Build Mater. 2020;252:119137.
  • Nuaklong P, Sata V, Wongsa A, et al. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr Build Mater. 2018;174:244–252.
  • Chen X, Niu Z, Wang J, et al. Effect of sodium polyacrylate on mechanical properties and microstructure of metakaolin-based geopolymer with different SiO2/Al2O3 ratio. Ceram Int. 2018;44(15):18173–18180.
  • Xu S, Malik MA, Qi Z, et al. Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Constr Build Mater. 2018;164:238–245.
  • Assaedi H, Shaikh F, Low IM. Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Compos B Eng. 2016;95:412–422.
  • Luo Z, Li W, Gan Y, et al. Maximum likelihood estimation for nanoindentation on sodium aluminosilicate hydrate gel of geopolymer under different silica modulus and curing conditions. Compos B Eng. 2020;198:108185.
  • Chen F, Wang K, Shao L, et al. Synthesis of Fe2O3-modified porous geopolymer microspheres for highly selective adsorption and solidification of F− from waste-water. Compos B Eng. 2019;178:107497.
  • Cao Y, Wang Y, Zhang Z, et al. Recent progress of utilization of activated kaolinitic clay in cementitious construction materials. Compos B Eng. 2021;211:108636.
  • Tanzadeh J. Laboratory evaluation of self-compacting fiber-reinforced concrete modified with hybrid of nanomaterials. Constr Build Mater. 2020;232:117211.
  • Guler S, Türkmenoğlu ZF, Ashour A. Performance of single and hybrid nanoparticles added concrete at ambient and elevated temperatures. Constr Build Mater. 2020;250:118847.
  • Mustakim SM, Das SK, Mishra J, et al. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon. 2020;13:1–14.
  • Al Bakri AM, Kamarudin H, Bnhussain M, et al. Nano geopolymer for sustainable concrete using fly ash synthesized by high energy ball milling. Appl Mech Materi. 2013;313:169–173.
  • Tuntachon S, Kamwilaisak K, Somdee T, et al. Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2. J Build Eng. 2019;25:100817.
  • Sastry KGK, Sahitya P, Ravitheja A. Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater Today Proc. 2020;45:1017–1025.
  • ASTMC618-19. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken (PA): ASTM International; 2019.
  • D695-15, A. Standard test method for compressive properties of rigid plastics. West Conshohocken (PA): ASTM International; 2015.
  • Shaikh F, Shafaei Y, Sarker P. Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar. Constr Build Mater. 2016;115:690–698.
  • Assaedi H. The role of nano-CaCO3 in the mechanical performance of polyvinyl alcohol fibre-reinforced geopolymer composites. Compos Interfaces. 2020;28:1–16.
  • Saini G, Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud Constr Mater. 2020;12:e00352.
  • Nuaklong P, Jongvivatsakul P, Pothisiri T, et al. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Cleaner Prod. 2020;252:119797.
  • Chindaprasirt P, De Silva P, Sagoe-Crentsil K, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci. 2012;47(12):4876–4883.
  • Alomayri T. Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). J Build Eng. 2019;25:100788.
  • Assaedi H, Shaikh F, Low IM. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr Build Mater. 2016;123:541–552.
  • ASTM C. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading), in C-1018; 1997.
  • Yip CK, Lukey G, Van Deventer JS. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688–1697.
  • Yip CK, Lukey GC, Provis JL, et al. Effect of calcium silicate sources on geopolymerisation. Cem Concr Res. 2008;38(4):554–564.
  • Phoo-ngernkham T, Chindaprasirt P, Sata V, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des. 2014;55:58–65.