1,029
Views
2
CrossRef citations to date
0
Altmetric
Research Article

n-Type narrow band gap A3InAs3 (A = Sr and Eu) Zintl phase semiconductors for optoelectronic and thermoelectric applications

, , , , , , , , & show all
Pages 660-669 | Received 13 Nov 2021, Accepted 05 Jul 2022, Published online: 13 Jul 2022

References

  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114.
  • Slack GA. New materials and performance limits from thermoelectric cooling. In: Rowe DM. (Ed.) CRC handbook of thermoelectrics. Boca Raton (FL): CRC Press; 1995. p. 407–440.
  • Beekman M, Morelli DT, Nolas GS. Better thermoelectrics through glass-like crystals. Nat Mater. 2015;14:1182–1185.
  • Ovchinnikov A, Bobev S. Zintl phases with group 15 elements and the transition metals: a brief overview of pnictides with diverse and complex structures. J Solid State Chem. 2019;270:346–359.
  • Hu Y, Cerretti G, Wille ELK, et al. The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties. J Solid State Chem. 2019;271:88–102.
  • Brown SR, Kauzlarich SM, Gascoin F, et al. Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem Mater. 2006;18 (7):1873–1877.
  • Toberer ES, Cox CA, Brown SR, et al. Transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1-xAlxSb11. Adv Funct Mater. 2008;18 (18):2795–2800.
  • Zheng L, Li W, Sun C, et al. Ternary thermoelectric AB2C2 Zintls. J Alloys Compd. 2020;821:153497.
  • Cordier G, Schafer H. Ca3AlAs3 – an intermetallic analogue of the chain silica. Angew Chem. 1981;93 (7):466–466.
  • Cordier G, Savelsberg G, Schafer H. Zintlphasen Mit .. Komplexen Anionen: Zur Kenntnis von Ca3AlAs3 and Ba3AlSb3. Z Naturforsch B. 1982;37:975–980.
  • Cordier G, Stelter M, Schäfer H. Zintlphasen Mit Komplexen Anionen: Zur Kenntnis von Sr6Al2Sb6. J Less Common Met. 1984;98:285–290.
  • Cordier G, Schafer H, Stelter M. Ca3AlSb3 and Ca5Al2Bi6, Zwei Neue Zintlphasen Mit Kettenförmigen Anionen.Z Naturforsch B. 1984;39:727–732.
  • Cordier G, Schafer H, Steher M. Neue Zintlphasen: ba3gasb3, Ca3GaAs3 und Ca3InP3. Z Naturforsch B. 1985;40 (9):1100–1104.
  • Cordier G, Schafer H, Stelter M. Sr3GaSb3 and Sr3InP3, two new Zintl phases with complex anions. Z Naturforsch B. 1987;42 (10):1268–1272.
  • Somer M, Cabrera WC, Peters K, et al. Crystal structure of tribarium triarsenidoindate, Ba3InAs3. Z Kristallogr N Cryst Struct. 1996;211 (9):632.
  • Stoyko S, Voss L, He H, et al. Synthesis, crystal and electronic structures of the pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As). Crystals (Basel). 2015;5 (4):433–446.
  • Jiang J, Payne AC, Olmstead MM, et al. Complex magnetic ordering in Eu3InP3: a new rare earth metal Zintl compound. Inorg Chem. 2005;44 (7):2189–2197.
  • Radzieowski M, Stegemann F, Klenner S, et al. On the divalent character of the Eu atoms in the ternary Zintl phases Eu5In2Pn6 and Eu3MAs3 (Pn=As-Bi; M=Al, Ga). Mater Chem Front. 2020;4 (4):1231–1248.
  • Rajput K, Baranets S, Bobev S. Observation of an unexpected n-type semiconducting behavior in the New Ternary Zintl phase Eu3InAs3. Chem Mater. 2020;32 (22):9616–9626.
  • Tamaki H, Sato HK, Kanno T. Isotropic conduction network and defect chemistry in Mg3+2-based layered Zintl compounds with high thermoelectric performance. Adv Mater. 2016;28 (46):10182–10187.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136 (3B):864–871.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140 (4A):A1133–A1138.
  • Blaha P, Schwarz K, Tran F, et al. WIEN2k: an augmented plane waves plus local orbitals program for calculating the properties of solid. J Chem Phys. 2020;152 (7):07410130.
  • Berri S. Theoretical study of physical properties of Ba3B(Nb,Ta)2O9 (B = Mg, Ca, Sr, Cd, Hg, Zn, Fe, Mn, Ni, Co) perovskites. Comp Condense Mater. 2021;29:e00595. doi:10.1016/j.cocom.2021.e00595.
  • Berri S. Half-metallic and thermoelectric properties of Sr2EuReO6. Comp Condense Mater. 2021;28:e586. doi:10.1016/j.cocom.2021.e00586.
  • Berri S. Computational study of structural, electronic, elastic, half-metallic and thermoelectric properties of CoCrScZ (Z = Al, Si, Ge, and Ga) quaternary Heusler alloys. J Supercond Nov Magn. 2020;33 (12):3809–3818. doi:10.1007/s10948-020-05638-4.
  • Elahmar MH, Rached H, Rached D. The half metallic feature at high temperature of the novel half-Heusler alloys and their [100] oriented layered superlattices: a DFT investigations. Mater Chem Phys. 2021;15:124712. doi:10.1016/j.matchemphys.2021.124712.
  • Rached AA, Babu MMH, Rached H, et al. Prediction of a new Sn-based MAX phases for nuclear industry applications: DFT calculations. Mater Today Cammun. 2021;27:102233. doi:10.1016/j.mtcomm.2021.102233.
  • Rached AA, Rached H, Ouadha' I, et al. The vanadium-doping effect on physical properties of the Zr2AlC MAX phase compound. Mater Chem Phys. 2021;260:124189. doi:10.1016/j.matchemphys.2020.124189.
  • Rached H. Prediction of a new quaternary Heusler alloy within a good electrical response at high temperature for spintronics applications: DFT calculations. Int J Quantum Chem. 2021;121 (12):e26647. doi:10.1002/qua.26647.
  • Hadji T, Khalfoun H, Rached H, et al. Ab-initio prediction of high TC half-metallic ferrimagnetism in Li-based Heusler compounds Mn2LiZ (Z = Si, Ge and Sn). Comp Condense Mater. 2021;27:e00557. doi:10.1016/j.cocom.2021.e00557.
  • Belasri A, Rached D, Rached H, et al. The half metallic behavior at high temperature of highly spin-polarized V-based Heusler alloy: DFT calculations. Eur Phys J B. 2021;94(110). doi:10.1140/epjb/s10051-021-00127-6
  • Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for manyelectron systems. Phys Rev B. 1981;23 (10):5048–5079.
  • Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev Lett. 1996;54:16533.
  • Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 2009;102 (22):226401.
  • Tsuneda T, Hirao K. Self-interaction corrections in density functional theory. J Chem Phys. 2014;140(18):18A5131–13.
  • Madsen GKH, Sing DJ. Boltztrape: a code for calculations band structure dependent quantities. Comput Phys Commun. 2006;175(1):67–71.
  • Vidal J, Lany S, Davezac M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett. 2012;100 (3):032104.
  • Zevalkink A, Toberer ES, Zeier WG, et al. Ca3AlSb3 an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ Sci. 2011;4 (2):510–518.
  • Zevalkink A, Zeier WG, Pomrehn G, et al. Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound. Energy Environ Sci. 2012;5 (10):9121–9128.
  • Zevalkink A, Pomrehn G, Takagiwa Y, et al. Thermoelectric properties and electronic structure of the Zintl phase Sr3AlSb3. Chem Sus Chem. 2013;6 (12):2316–2321.
  • Ullah I, Murtaza G, Khenata R, et al. Structural and optoelectronic properties of X3ZN (X = Ca, Sr, Ba; Z = As, Sb, Bi) anti-perovskite compounds. J Electro Mater. 2016;45 (6):3059–3068.
  • Slack GA. The thermal conductivity of nonmetallic crystals. J Appl Phys Solid State Phys. 1979;34(1). doi:10.1016/S0081-1947(08)60359-8.
  • Ortiz BR, Gorai P, Stevanovic V, et al. Thermoelectric performance and defect chemistry in n-type Zintl KGaSb4. Chem Mater. 2017;29 (10):4523–4534.
  • Balvanz A, Baranets S, Bobev S. Synthesis and structural characterization of the new Zintl phases Ba3Cd2P4 and Ba2Cd2P3. Rare example of small gap semiconducting behavior with negative thermopower within the range 300 K-700 K. J Solid State Chem. 2020;289:121476–121479.
  • Zevalkink A, Swallow J, Ohno S, et al. Thermoelectric properties of the Ca5Al2-xInxSb6 solid solution. Dalton Trans. 2014;43 (42):15872–15878.
  • Kazem N, Hurtado A, Sui F, et al. High temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6-xZnxSb12. Chem Mater. 2015;27 (12):4413–4421.
  • Ohno S, Aydemir U, Amsler M, et al. Achieving ZT > 1 in Inexpensive Zintl phase Ca9Zn4 + xSb9 by phase boundary mapping. Adv Funct Mater. 2017;27 (20):1606361.