697
Views
3
CrossRef citations to date
0
Altmetric
Research Article

From conventional to inverse magnetocaloric effect in GdMn1-xCrxO3

ORCID Icon & ORCID Icon
Pages 670-675 | Received 08 Oct 2021, Accepted 07 Jul 2022, Published online: 14 Jul 2022

References

  • Hsini M, Hcini S, Zemni S. Study of magnetic entropy change in Nd0.67Ba0.33Mn0.98Fe0.02O3 by means of theoretical models. J.Supercond. Nov. Magn. 2018;31:81.
  • Wang X, Wu J, Dkhil B, et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys.Lett. 2017;110:063904.
  • Ahmed EM, Hemeda OM, Alamri HR, et al. Magnetocaloric Effect in α'-MnB Nanoparticles. Russ J Phys Chem. 2022;96:S101–S104.
  • Hamad MA, Alamri HR. α-MnO2 nanorods’ magnetocaloric effect for hydrogen liquefaction. J Supercond Nov Magn. 2022;35:515–518.
  • Alzahrani B, Hsini M, Hcini S, et al. Study of the magnetocaloric effect by means of theoretical models in La0.6Ca0.2Na0.2MnO3 manganite compound. J. Low Temp. Phys. 2020;200:26–39.
  • Hamad MA. Magnetocaloric effect in Sr2FeMoO6/Ag composites. Process.Appl.Ceram. 2015;9:11.
  • Bai Y, Wu X, Zhao S. Oxygen vacancy modulating inverse and conventional magnetocaloric effects coexisting in double perovskite Bi2NiMnO6-δ films. Ceram Int. 2021;47:6614–6622.
  • Ewas AM. Large magnetocaloric effect of La0.67Pb0.33Mn1−xCoxO3 in small magnetic field variation. Ceram. Int. 2017;43:7660.
  • Ahmed E, Hemeda O, Alamri H, et al. Investigation on Magnetocaloric Effect in Sc Doped Th2NiC2 Superconductors. Phys. Metals Metallogr. 2021;122:1454–1457.
  • Mechi N, Alzahrani B, Hcini S, et al. Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3perovskite. Phase Trans. 2018;91:559.
  • Bourouina M, Krichene A, Boudjada NC, et al. Structural, magnetic and magnetocaloric properties of nanostructured Pr 0.5 Sr 0.5 MnO 3 manganite synthesized by mechanical alloying. Ceram. Int. 2017;43:8139.
  • Abdelalim Y, Mohamed A, Hemeda O, et al. Simulation of magnetocaloric properties in La1-xBaxCoO3. Journal of Magnetism and Magnetic Materials. 560;120:169661.
  • Dhahri A, Jemmali M, Dhahri E, et al. Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75 Sr0.1Ca0.15 MnO3 compound. J. Alloy Compd. 2015;638:221.
  • Ahmed E, Alamri H, Elghnam S, et al. Tuning Magnetocaloric Properties for La1 – xSrxCoO3. Phys. Solid State. 2021;63:1601–1604.
  • Jeddi M, Gharsallah H, Bekri M, et al. Phenomenological modeling of magnetocaloric properties in 0.75La0.6Ca0.4MnO3/0.25La0.6Sr0.4MnO3 nanocomposite manganite. J.Low Temp.Phys. 2020;198:135.
  • Sfifir I, Koubaa W, Koubaa M, et al. Phenomenological model of magnetocaloric effect in La0.7Ca0.2Ba0.1MnO3 manganite around room temperature. J.Supercond. Nov. Magn. 2017;30:911.
  • Zarai E, Issaoui F, Tozri A, et al. Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in Sr1.5Nd0.5MnO4 compound. J.Supercond. Nov. Magn. 2016;29:869.
  • Thandapani P, Ramalinga M, Denardin JC. Magnetocaloric effect and universal curve behavior in superparamagnetic zinc ferrite nanoparticles synthesized via microwave assisted co-precipitation method. Phys. Status Solidi (a). 2018;215:1700842.
  • Dung NT, Pham Y, Lam DS, et al. Critical behavior of polycrystalline Pr0.7Ca0.1Sr0.2MnO3 exhibiting the crossover of first and second order magnetic phase transitions. J. Mater. Res. Technol. 2020;9:12747.
  • Zhang KS, Xue JN, Wang YX, et al. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13composite plates bonded by different fraction of phenolic resin. AIP Adv. 2018;8:048104.
  • Ahmed EM, Hemeda OM, Alamri HR, et al. Investigation of thermomagnetic properties in Ca3Co2O6over cryogenic temperature between 0 and 100 K. Phase Trans. 2021;94:835–841.
  • Mohassel R, Amiri M, Abbas AK, et al. Pechini synthesis using propylene glycol and various acid as stabilizing agents and characterization of Gd2NiMnO6 ceramic nanostructures with good photocatalytic properties for removal of organic dyes in water. J. Mater. Res. Technol. 2020;9:1720.
  • Hussain I, Khan SN, Kim EJ, et al. Nb modified structural, magnetic and magnetocaloric properties of double perovskite Ba2FeMo1−xNbxO6. Ceram. Int. 2018;44:2892.
  • Hcini S, Boudard M, Dhahri A, et al. Magnetocaloric effect study by means of theoretical models and spontaneous magnetization determination in Ni0.4Mg0.3Cu0.3Fe2O4ferrite. Mater Res Express. 2019;6:066108.
  • El Kossi S, Dhahri J, Hlil EK. Structural, magnetic and theoretical investigations on the magnetocaloric properties of La0.7Sr0.25K0.05MnO3perovskite. RSC Adv. 2016;6:63497.
  • Barclay J, Brooks K, Cui J, et al. Propane liquefaction with an active magnetic regenerative liquefier. Cryogenics. 2019;100:69–76.
  • El-Sayed AH, Hamad MA. Tailoring thermomagnetic properties in Pb(Zr0.52Ti0.48)O3–Ni(1−x)ZnxFe2O4. Phase Trans. 2019;92:517.
  • Qian Y, Ma X, Si X, et al. The analysis of magnetocaloric effect and magnetic critical behavior in Mn5Ge3−xAgxcompounds. Phys Scr. 2020;95:065701.
  • Hamad MA, Hemeda OM, Mohamed AM. Investigations on enhancing thermomagnetic properties in CoxZn1−xFe2O4. J.Supercond.Nov.Magn. 2020;33:2753–2757.
  • Mandal K, Das SC, Dutta P, et al. Effect of non-magnetic Ag-doping on magnetic and magnetofunctional properties of MnNiGe alloy. J. Alloys Comp. 2020;822:153454.
  • Singh V, Bag P, Rawat R, et al. Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci Rep. 2020;10:1–17.
  • Kokila IP, Kumar PS, Kanagaraj M, et al. Multiple magnetic phase transition and short-range ferromagnetic behavior influence on magnetocaloric effect of Sm2NiMnO6 nanoparticles. J. Nanoparticle Res. 2020;22:1–10.
  • Mandal PR, Khan A, Nath TK. Antisite disorder driven magnetodielectric and magnetocaloric effect in double perovskite La2−xSrxCoMnO6(x = 0.0, 0.5, 1.0). J. Appl. Phys. 2020;128:024104.
  • Barman A, Chatterjee S, Dey JK, et al. Interface-induced enhanced magnetocaloric effect in an epitaxial Co Fe 2 O 4/La 0.7 Sr 0.3 Mn O 3 heterostructure. Phys.Rev.B. 2020;102:054433.
  • Fkhar L, Mounkachi O, El Maalam K, et al. Large magnetic entropy change in Pr2/3Sr1/3MnO3-CuO Composite at Room Temperature. J.Supercond.Nov.Magn. 2019;32:3579.
  • Alamri H, Elghnam S, Hemeda O, et al. Hysteresis Energy Loss of Nanocrystalline CoFe2O4 Synthesized by Modified Citrate-Gel Method. Phys. Solid State. 2021;63:1332–1336.
  • Liu Y, Zhang X, Xing D, et al. Magnetocaloric effect (MCE) in melt-extracted Ni–Mn–Ga–Fe Heusler microwires. J. Alloys Comp. 2014;616:184.
  • Moya X, Mañosa L, Planes A, et al. Cooling and heating by adiabatic magnetization in the Ni 50 Mn 34 In 16 magnetic shape-memory alloy. Phys.Rev.B. 2007;75:184412.
  • Magesh J, et al. Strong enhancement of magnetoelectric coupling in Dy3+doped HoMnO3. Appl. Phys. Lett. 2012;101:1–4.
  • Kurbakov AI, Ryzhov VA, Runov VV, et al. Study of phase separation phenomena in half-doped manganites with isovalent substitution of rare-earth cations on example of Sm 0.32 Pr 0.18 Sr 0.5 MnO 3 . Phys.Rev.B. 2019;100:184424.
  • Ferreira WS, Moreira JA, Almeida A, et al. Spin-phonon coupling and magnetoelectric properties: EuMnO 3 versus GdMnO 3. Phys. Rev. B. 2009;79:054303.
  • Tiwari P, Kumar S, Rath C. Probing structural transformation and optical and magnetic properties in Cr doped GdMnO3: Jahn–Teller distortion, photoluminescence and magnetic switching effect. RSC Adv. 2019;9:39871.
  • Hamad MA. Prediction of thermomagnetic properties of La0.67Ca0.33MnO3and La0.67Sr0.33MnO3. Phase Trans. 2012;85:106.
  • Hamad MA. Theoretical work on effect of pressure on magnetocaloric properties of $${La}_{0.7}{Ca}_{0.3}{MnO}_{3}$$ La 0.7 Ca 0.3 MnO 3. Int. J. Thermophys. 2015;36:2748.
  • Evangelisti M, Candini A, Affronte M, et al. Magnetocaloric effect in spin-degenerated molecular nanomagnets. Phys.Rev.B. 2009;79:104414.
  • Hamad MA. Magnetocaloric effect in La1−x Cd x MnO3. J.Supercond.Nov.Magn. 2013;26:3459.
  • Hemeda OM, Mostafa NY, Abd Elkader OH, et al. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite. J.Magn.Magn.Mater. 2015;394:96–104.
  • El-Sayed AH, Hamad MA. Nickle concentration effect on low magnetic field magnetocaloric properties for Ni2+xMn1−xGe. J.Supercond.Nov.Magn. 2019;31:1447.
  • Hamad MA. Magnetocaloric effect in (001)-Oriented MnAs thin film. J.Supercond.Nov.Magn. 2014;27:263.
  • Hamad MA. Magnetocaloric effect in polycrystalline Gd1−xCaxBaCo2O5.5. Materials Lett. 2012;82:181.
  • Hamad MA. Magnetocaloric effect in La1.25Sr0.75MnCoO6. J.Therm.Anal.Calorim. 2014;115:523.
  • Amirov AA, Makoed II, Chaudhari YA, et al. Magnetocaloric effect in BiFe1−xZnxO3 multiferroics. J.Supercond.Nov.Magn. 2018;31:3283.
  • Masrour R, Jabar A, Benyoussef A, et al. Monte Carlo simulation study of magnetocaloric effect in NdMnO 3 perovskite. J.Magn.Magn.Mater. 2016;401:91–95.
  • Hamad MA. Magneto-caloric effect in Ge0.95Mn0.05 Films. J.Supercond.Nov.Magn. 2013;26:449.
  • Amirov AA, Makoed II, Chaudhari YA, et al. Magnetocaloric effect in BiFe1−xZnxO3 multiferroics. J.Supercond.Nov.Magn. 2018;31:3283.
  • El-Sayed AH, Hamad MA. Phenomenological modeling of magnetocaloric effect for Ni58Fe26Ga28 Alloy. J.Supercond.Nov.Magn. 2018;31:1895.
  • Ba DN, Zheng Y, Becerra L. Magnetocaloric effect in flexible, free-standing gadolinium thick films for energy conversion applications. Phys Rev Appl. 2021;15:064045.