775
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mathematical model of oxytactic bacteria’s role on MHD nanofluid flow across a circular cylinder: application of drug-carrier in hypoxic tumour

, ORCID Icon &
Pages 703-724 | Received 08 Jan 2022, Accepted 20 Jul 2022, Published online: 08 Aug 2022

References

  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018;16(71):1–33. doi:10.1186/s12951-018-0392-8.
  • Gun SY, Lee SWL, Sieow JL, et al. Targeting immune cells for cancer therapy. Redox Biol. 2019;25:101174, doi:10.1016/j.redox.2019.101174.
  • Schmidt CK, Medina-Sánchez M, Edmondson RJ, et al. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun. 2020;11:1–18. doi:10.1038/s41467-020-19322-7.
  • Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy – enemies in the past, but allies at present. Infect Agent Cancer. 2018;13:9, doi:10.1186/s13027-018-0180-y.
  • Oladejo M, Paterson Y, Wood LM. Clinical experience and recent advances in the development of listeria-based tumor immunotherapies. Front Immunol. 2021;14:12, doi:10.3389/fimmu.2021.642316.
  • Chen Y, Du M, Yu J, et al. Nanobiohybrids: a synergistic integration of bacteria and nanomaterials in cancer therapy. BIOI. 2020;1:25–36. doi:10.15212/bioi-2020-0008.
  • Al Tameemi W, Dale TP, Al-Jumaily RM, et al. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol. 2019;29. doi:10.3389/fcell.2019.00004.
  • Alimoradi H, Matikonda SS, Gamble AB, et al. Hypoxia responsive drug delivery systems in tumor therapy. Curr Pharm Desi. 2016;22(19):2808–2820. doi:10.2174/1381612822666160217130049.
  • Hussain S, Aly A, Öztopd H. Magneto-bioconvection flow of hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle. Int Commun Heat Mass Transfer. 2022;134:106029, doi:10.1016/j.icheatmasstransfer.2022.106029.
  • Ibrahim M, Asfour H. The effect of computational processing of temperature- and concentration-dependent parameters on non-Newtonian fluid MHD: applications of numerical methods. Heat Transfer. 2022;51:1, doi:10.1002/htj.22432.
  • Alrabaiah H, Bilal M, Khan M, et al. Parametric estimation of gyrotactic microorganism hybrid nanofluid flow between the conical gap of spinning disk-cone apparatus. Sci Rep. 2022;12:59, doi:10.1038/s41598-021-03077-2.
  • Ch B, Alluguvelli R, Naikoti K, et al. Effect of chemical reaction on bioconvective flow in oxytactic microorganisms suspended porous cavity. J. Appl Comp Mecha. 2020;6:653–664. doi:10.22055/JACM.2019.14811.
  • Imran M, Farooq U, Muhammad T, et al. Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation. Case Stud Therm Eng. 2021;26:101129, doi:10.1016/j.csite.2021.101129.
  • Sankad G, Maharudrapppa I, Dhange M. Bioconvection in Casson fluid flow with gyrotactic microorganisms and heat transfer over a linear stretching sheet in presence of magnetic field. Adv Math Sci J. 2021;10:155–169. doi:10.37418/amsj.10.1.16.
  • Waqas H, Manzoor U, Shah Z, et al. Magneto-Burgers nanofluid stratified flow with swimming motile microorganisms and dual variables conductivity configured by a stretching cylinder/plate. Math Probl Engi. 2021 doi:10.1155/2021/8817435.
  • Muntazir R, Mushtaq M, Jabeen K. A numerical study of MHD Carreau nanofluid flow with gyrotactic microorganisms over a plate, wedge, and stagnation point. Math Prob Eng. 2021. doi:10.1155/2021/5520780.
  • Sheikhpour M, Arabi M, Kasaeian A, et al. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnol, Sci Appl. 2020;13:47–59. doi:10.2147/NSA.S260374.
  • Shafiq A, Gh R, Ch K, et al. Second grade bioconvective nanofluid flow with buoyancy effect and chemical reaction. Symmetry (Basel). 2020;12:621. doi:10.3390/sym12040621.
  • Elogail M, Kh M. Modulated viscosity-dependent parameters for MHD blood flow in microvessels containing oxytactic microorganisms and nanoparticles. Symmetry (Basel). 2020;12. doi:10.3390/sym12122114.
  • Kh A-U, Sohail A, Yu Z, et al. Dynamical analysis of the delayed immune response to cancer. Results Phys. 2021;26:104282, doi:10.1016/j.rinp.2021.104282.
  • Yu Z, Ellahi R, Nutini A, et al. Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J Mol Liq. 2021;327:114863, doi:10.1016/j.molliq.2020.114863.
  • Sohail A, Arif R, Azim QUA, et al. Piecewise fractional order modeling of the breast cancer epidemiology after the Atezolizumab treatment. Fractals. 2022. doi:10.1142/S0218348X22401764.
  • Zafar Z, Zaibb S, Hussain M, et al. Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chao Solit Frac. 2022;160:112202, doi:10.1016/j.chaos.2022.112202.
  • Zafar Z, Younas S, Zaib S, et al. An efficient numerical simulation and mathematical modeling for the prevention of tuberculosis. Inter J Biom. 2022;15(04):2250015, doi:10.1142/S1793524522500152.
  • Zafar Z, Tunç C, Ali N, et al. Dynamics of an arbitrary order model of Toxoplasmosis ailment in human and cat inhabitants. J Taibah Univ Sci. 2021;15(1):882–896. doi:10.1080/16583655.2021.1990603.
  • Subia B, Dahiya U, Mishra S, et al. Breast tumor-on-chip models: from disease modeling to personalized drug screening. J Control Release. 2021;331:103–120. doi:10.1016/j.jconrel.2020.12.057.
  • Amirsom N, Md U, Md B, et al. Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second-order slip and variable thermophysical properties. Appl Sci. 2019;9:1–19. doi:10.3390/app9122493.
  • Nima N, Ferdows M, Adesanya S, et al. Double diffusivity heat generation effects on bioconvection process embedded in a vertical porous surface with variable fluid properties. J Therm Anal Calorim. 2020;145:2571–2580. doi:10.1007/s10973-020-09822-5.
  • Elgazery NS, Elelamy AF. Multiple solutions for non-Newtonian nanofluid flow over a stretching sheet with nonlinear thermal radiation: application in transdermal drug delivery. Pramana J Phys. 2020;94:68, doi:10.1007/s12043-020-1925-x.
  • Rashad AM, Nabwey HA. Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J Taiwan Instit Chem Eng. 2019;99:9–17. doi:10.1016/j.jtice.2019.02.035.
  • Zokri SM, Arifin NS, Mohamed MK, et al. Mathematical model of mixed convection boundary layer flow over a horizontal circular cylinder filled in a Jeffrey fluid with viscous dissipation effect. Sains Malay. 2018;47:1607–1615. doi:10.17576/jsm-2018-4707-32.
  • Basha HT, Sivaraj R, Prasad VR, et al. Entropy generation of tangent hyperbolic nanofluid flow over a circular cylinder in the presence of nonlinear Boussinesq approximation: a non similar solution. J Therm Anal Calorim. 2020;143:2273–2289. doi:10.1007/s10973-020-09981-5.
  • Nima NI, Ferdows M, Bég OA, et al. Biomathematical model for gyrotactic free-forced bioconvection with oxygen diffusion in near-wall transport within a porous medium fuel cell. Int J Biom. 2020;13:2050026, doi:10.1142/S1793524520500266.
  • Kuznetsov AV. Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below. Theor Comput Fluid Dyn. 2012;26:291–310. doi:10.1007/s00162-011-0230-1.
  • Mondal SK, Pal D. Computational analysis of bioconvective flow of nanofluid containing gyrotactic microorganisms over a nonlinear stretching sheet with variable viscosity using HAM. J Comput Des Eng. 2020;7:251–267. doi:10.1093/jcde/qwaa021.
  • Nazar R, Amin N, Filip D, et al. The Brinkman model for the mixed convection boundary layer flow past a horizontal circular cylinder in a porous medium. Int J Heat Mass Transfer. 2003;46:3167–3178. doi:10.1016/S0017-9310(03)00122-4.
  • Anwar I, Amina N, Pop I. Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder. Int J Non-Linear Mech. 2008;43:814–821. doi:10.1016/j.ijnonlinmec.2008.04.008.
  • Rashad AM, Chamkha AJ, Modather M. Mixed convection boundary-layer flow past a horizontal circular cylinder embedded in a porous medium filled with a nanofluid under convective boundary condition. Comput Fluids. 2013;86:380–388. doi:10.1016/j.compfluid.2013.07.030.
  • Merkin JH. Mixed convection from a horizontal circular cylinder. Int J Heat Mass Transfer. 1977;20:73–77. doi:10.1016/0017-9310(77)90086-2.
  • Elgazery NS. An implicit-Chebyshev pseudospectralmethod for the effect of radiation on power-law fluid past a vertical plate immersed in a porous medium. Commun Nonlinear Sci Num Simul. 2008;13:728–744. doi:10.1016/j.cnsns.2006.07.002.
  • Elgazery NS. Effects of variable fluid properties on natural convection of MHD fluid from a heated vertical wavy surface. Meccanica. 2012;47:1229–1245. doi:10.1007/s11012-011-9507-0.
  • Elbarbary EM, El-Sayed SM. Higher order pseudospectral differentiation matrices. Appl Num Math. 2005;55:425–438. doi:10.1016/j.apnum.2004.12.001.
  • Chauviere A, Hatzikirou H, Lowengrub J, et al. Mathematical oncology: how are the mathematical and physical sciences contributing to the war on breast cancer? Curr Breast Cancer Rep. 2010;2:121–129. doi:10.1007/s12609-010-0020-6.
  • Michor F, Beal K. Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort. Cell. 2015;19:1059–1063. doi:10.1016/j.cell.2015.11.002.
  • Barbolosi D, Ciccolini J, Lacarelle B, et al. Computational oncology — mathematical modelling of drug regimens for precision medicine. Nat Rev Clin Oncol. 2016;13:242–254. doi:10.1038/nrclinonc.2015.204.
  • Brady R, Enderling H. Mathematical models of cancer: when to predict novel therapies, and when not to. Bull Math Biol. 2019;81:3722–3731. doi:10.1007/s11538-019-00640-x.
  • Xiao Y, Shen J, Zou X. Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Math Biosci Eng. 2022;19:4120–4144. doi:10.3934/mbe.2022190.
  • Ferretti G, Fagoni N, Taboni A, et al. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Phys. 2022;122:1317–1365. doi:10.1007/s00421-022-04901-x.
  • Duong M, Qin Y, You S, et al. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51:152. doi:10.1038/s12276-019-0297-0.
  • Lee H, Dey D, Kim K, et al. Hypoxia-responsive nano-medicine to overcome tumor microenvironment-mediated resistance to chemo-photodynamic therapy. Mater Today Adv. 2022;14:100218, doi:10.1016/j.mtadv.2022.100218.
  • Rakotomalala A, Escande A, Furlan A, et al. Hypoxia in solid tumors: how low oxygenation impacts the “Six Rs” of radiotherapy. Front Endocrinol. 2021. doi:10.3389/fendo.2021.742215.
  • Pandey M, Choudhury H, Vijayagomaran P, et al. Recent update on bacteria as a delivery carrier in cancer therapy: from evil to allies. Pharm Res. 2022;6:1–20. doi:10.1007/s11095-022-03240-y.
  • Sheikhpour M, Arabi M, Kasaeian A, et al. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnol Sci Appl. 2020;13:47–59. doi:10.2147/NSA.S260374.
  • Université de Bordeaux Thèse présentée pour obtenir le diplôme HABILITATION A DIRIGER DES RECHERCHES Spécialité: Mathématiques appliquées par Sébastien Benzekry. 2017.