538
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A new study of soliton solutions for the variable coefficients Caudrey–Dodd–Gibbon equation

&
Pages 763-773 | Received 30 Mar 2022, Accepted 19 Aug 2022, Published online: 06 Sep 2022

References

  • Chentouf B. On the exponential stability of a nonlinear Kuramoto–Sivashinsky–Korteweg–de Vries equation with finite memory. Mediterr J Math. 2022;19:11.
  • Chentouf B. Well-posedness and exponential stability results for a nonlinear Kuramoto–Sivashinsky equation with a boundary time-delay. Anal Math Phys. 2021;11:144.
  • Chentouf B. Qualitative analysis of the dynamic for the nonlinear Korteweg–de Vries equation with a boundary memory. Qual Theory Dyn Syst. 2021;20:36.
  • Chentouf B, Guesmia A. Well-posedness and stability results for the Korteweg–de Vries-Burgers and Kuramoto–Sivashinsky equations with infinite memory: a history approach. Nonlinear Anal Real World Appl. 2022;65:103–508.
  • Ammari K, Chentouf B, Smaoui N. Well-posedness and stability of a nonlinear time-delayed dispersive equation via the fixed-point technique: a case study of no interior damping. Math Methods Appl Sci. 2022;45:4555–4566.
  • Alam MN, Tunç C. The new solitary wave structures for the (2 + 1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations. Alex Eng J. 2020;59:2221–2232.
  • Islam S, Alam MN, Al-Asad MF, et al. An analytical technique for solving new computational of the modified Zakharov–Kuznetsov equation arising in electrical engineering. J Appl Comput Mech. 2021;7:715–726.
  • Alam MN, Tunç C. Constructions of the optical solitons and others soliton to the conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. J Taibah Univ Sci. 2020;14:94–100.
  • Alam N, Tunç C. New solitary wave structures to the (2 + 1)-dimensional KD and KP equations with spatio-temporal dispersion. J King Saud Univ Sci. 2020;32:3400–3409.
  • Kumar D, Kaplan M. Application of the modified Kudryashov method to the generalized Schrdinger–Boussinesq equations. Opt Quantum Electron. 2018;50:329.
  • Hosseini K, Mayeli P, Ansari R. Modified Kudryashov method for solving the conformable time-fractional Klein–Gordon equations with quadratic and cubic nonlinearities. Optik. 2016;130:737–742.
  • Selvaraj R, Venkatraman S, Ashok DD, et al. Exact solutions of time-fractional generalised Burgers–Fisher equation using generalised Kudryashov method. Pramana. 2020;94:1–8.
  • Adem AR, Yildirim Y, Yaşar E. Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov's approach. Pramana. 2019;92:24.
  • Ismail A. A discrete generalization of the extended simplest equation method. Commun Nonlinear Sci Numer Simul. 2010;15:1967–1973.
  • Sudao Bilige A, Temuer Chaolu B, Xiaomin Wang A. Application of the extended simplest equation method to the coupled Schrdinger–Boussinesq equation. Appl Math Comput. 2013;224:517–523.
  • Yang Y. Exact solutions of the Boussinesq equation using the extended simplest equation method. IOP Conf Ser Mater Sci Eng. 2019;677:42–72.
  • Noeiaghdam S, Zarei E, Kelishami HB. Homotopy analysis transform method for solving Abel's integral equations of the first kind. Ain Shams Eng J. 2015;7:483–495.
  • Abdel-Gawad HI. Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport. J Stat Phys. 2012;147:506–518.
  • Yusuf A, Sulaiman TA, Inc M, et al. Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. Eur Phys J Plus. 2020;135:563.
  • Xu YG, Zhou XW, Li Y. Solving the fifth order Caudrey–Dodd–Gibbon (CDG) equation using the exp-function method. Appl Math Comput. 2008;206:70–73.
  • Neamaty A, Agheli B, Darzi R. Exact travelling wave solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by (g′/g)-expansion method. SeMA J. 2015;73:121–129.
  • Kumar D, Kumar S. Some more solutions of Caudrey–Dodd–Gibbon equation using optimal system of lie symmetries. Int J Appl Comput Math. 2020;6:125.
  • Jin L. Application of the variational iteration method for solving the fifth order Caudrey-Dodd–Gibbon equation. Oncogene. 2010;66:3259–3265.
  • Bibi S, Ahmed N, Faisal I, et al. Some new solutions of the Caudrey–Dodd–Gibbon (CDG) equation using the conformable derivative. Adv Differ Equ. 2019;2019:1–27.
  • Ahmad J, Nauman R, Osman MS. Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun Theor Phys. 2019;71:362.
  • Osman MS, Baleanu D, Adem AR, et al. Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations. Chinese J Phys. 2020;63:122–129.
  • Osman MS, Rezazadeh H, Eslami M. Traveling wave solutions for (3 + 1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 2019;8:559–567.
  • Osman MS, Rezazadeh H, Eslami M, et al. Analytical study of solitons to Benjamin–Bona–Mahony–Peregrine equation with power law nonlinearity by using three methods. U Politeh Buch Ser A. 2018;80:187–267.
  • Huai-Tang C, Hong-Qing Z. New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation. Chaos Soliton Fract. 2014;20:765–769.
  • Ray SS. New analytical exact solutions of time fractional KdV–KZK equation by Kudryashov methods. Chinese Phys B. 2016;25:40–204.
  • Qu QX, Tian B, Sun K, et al. Bcklund transformation, lax pair, and solutions for the Caudrey–Dodd–Gibbon equation. J Math Phys. 2011;52:013511.
  • Wazwaz AM. N-soliton solutions for the combined KdV–CDG equation and the KdV–Lax equation. Appl Math Comput. 2008;203:402–407.
  • Tu JM, Tian SF, Xu MJ, et al. Quasi-periodic waves and solitary waves to a generalized KdV-Caudrey–Dodd–Gibbon equation from fluid dynamics. Taiwan J Math. 2016;20:823–848.
  • Alam MK, Hossain MD, Akbar MA, et al. Determination of the rich structural wave dynamic solutions to the Caudrey–Dodd–Gibbon equation and the lax equation. Lett Math Phys. 2021;111:103.
  • Osman MS, Abdel-Gawad HI. Multi-wave solutions of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients. Eur Phys J Plus. 2015;130:1–11.