396
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Well-posedness and regularity of some stochastic time-fractional integral equations in Hilbert space

& ORCID Icon
Pages 788-798 | Received 04 Mar 2022, Accepted 26 Aug 2022, Published online: 12 Sep 2022

References

  • Alam MN, Tunc C. Construction of the optical solitons and other solitons to the comformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. J Taibah Univ Sci. 2020;14(1):94–100.
  • Bohner M, Tunç O, Tunç C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput Appl Math. 2021;40(6):1–17.
  • Gabano J D, Poinot T. Fractional modelling and identification of thermal systems. Signal Process. 2011;91(3):531–541. DOI:10.1016/j.sigpro.2010.02.005.
  • Graef JR, Tunç C, Şevli H. Razumikhin qualitative analyses of Volterra integro-fractional delay differential equation with Caputo derivatives. Commun Nonlinear Sci Numer Simul. 2021;103:1–12. DOI:10.1016/j.cnsns.2021.106037.
  • Rezapour S, Mohammadi H. A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative. Adv Differ Equ. 2020;2020:488. DOI:10.1186/s13662-020-02945-x.
  • Saxena R, Kalla S. Solution of space–time fractional Schrodinger equation occurring in quantum mechanics. Frac Calc Appl Anal. 2010;13(2):177–190.
  • Graef JR, Tunç O. Asymptotic behavior of solutions of Volterra integro-differential equations with and without retardation. J Integral Equ Appl. 2021;33(3):289–300. DOI:10.1216/jie.2021.33.289.
  • Ucar E, Ozdemir N, Altun E. Fractional order model of immune cells influenced by cancer cells. Math Model Nat Phenom. 2019;14(3):308–320.
  • Zhou Q, Sonmezoglu A, Ekici M, et al. Optical solutions of some fractional differential equations in nonlinear optics. J Mod Opt. 2017;64(21):2345–2349.
  • Arab Z, Debbi L. Fractional stochastic Burgers-type Equation in Hölder space-Wellposedness and approximations. Math Methods Appl Sci. 2021;44:705–736.
  • Meerschaert M M, Sikorskii A. Stochastic models for fractional calculus. Berlin/Boston: Walter de Gruyter & Co.; 2012. (De Gruyter Studies in Mathematics; vol. 43). DOI:10.1515/9783110258165
  • Metzeler R, Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A. 2004;37:R161–R208. DOI:10.1088/0305-4470/37/31/R01
  • Caraballo T, Diop MA, Ndiaye AA. Asymptotic behavior of neutral stochastic partial functional integro-differential equations driven by a fractional Brownian motion. J Nonlinear Sci Appl. 2014;7:407–421.
  • Arthi G, Park JH, Jung HY. Existence and exponential stability for neutral stochastic integro-differential equations with impulses driven by a fractional Brownian motion. Commun Nonlinear Sci Numer Simul. 2016;32:145–157. DOI:10.1016/j.cnsns.2015.08.014.
  • Sathiyara T, Balasubramaniam P. Controllability of fractional higher order stochastic integro-differential systems with fractional Brownian motion. ISA Trans. 2017;82:107–119. DOI:10.1016/j.isatra.2017.11.005.
  • El-Borai MM, El-Nadi KE-S, Mostafa OL, et al. Semigroup and some fractional stochastic integral equations. Int J Pure Appl Math Sci. 2006;3(1):47–52.
  • El-Borai MM, El-Nadi KE-S, Mostafa OL, et al. Volterra equations with fractional stochastic integrals. Math Probl Eng. 2004;2004(5):453–468.
  • Chauhan HVS, Singh B, Tunç C, Tunç O. On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 2022;116(3): Paper No. 101, 11 pp. DOI:10.1007/s13398-022-01246-0
  • Tunç C, Tunç O. A note on the stability and boundedness of solutions to non-linear differential systems of second order. J Assoc Arab Univ Basic Appl Sci. 2017;24:169–175. DOI:10.1016/j.jaubas.2016.12.004
  • Tunç O, Tunç C. On the asymptotic stability of solutions of stochastic differential delay equations of second order. J Taibah Univ Sci. 2019;13(1):875–882. DOI:10.1080/16583655.2019.1652453
  • Tunç O, Tunç C, Yao J-C, Wen C-F. New Fundamental Results on the Continuous and Discrete Integro-Differential Equations. Mathematics. 2022;10(9):1377. DOI:10.3390/math10091377
  • Tunç C, Tunç O. New results on the qualitative analysis of integrodifferential equations with constant time-delay. J Nonlinear Convex Anal. 2022;23(3):435–448.
  • Elborai MM. Some probability densities and fundamental solution of fractional evolution equations. Chaos Solitons Fractals. 2002;14:51–74.
  • Zou G. A Galerkin finite element method for time-fractional stochastic heat equation. Comput Math Appl. 2018;75(11):4135–4150.
  • Kruse R. Strong and weak approximations of semilinear stochastic evolution equations: Lecture Notes in Mathematics, 2093. Cham: Springer, 2014
  • Henry D. Geometric theory of semilinear parabolic equations. Springer-Verlag: Berlin; 1981. (Volume 840 of lecture notes in mathematics).
  • Arab Z. On some numerical aspects for some fractional stochastic partial differential equations; case of Burgers equation: Lecture Notes in Mathematics, 2093. Sétif, Algeria: University of Sétif 1; 2021.