602
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A comparative study based on localized surface plasmon resonance optical characteristics of green synthesized nanoparticles towards spectrophotometric determination of cupric ions

, , &
Pages 912-922 | Received 26 May 2022, Accepted 06 Sep 2022, Published online: 23 Sep 2022

References

  • Feng L, Zhang Y, Wen L, et al. Colorimetric determination of copper (II) ions by filtration on sol–gel membrane doped with diphenylcarbazide. Talanta. 2011;84(3):913–917.
  • Peers G, Price MN. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature. 2006;441(7091):341–344.
  • Awual MR, Hasan MM. Colorimetric detection and removal of copper (II) ions from wastewater samples using tailor-made composite adsorbent. Sens Actuators B: Chem. 2015;206:692–700.
  • Valentine JS, Hart JP. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci. 2003;100(7):3617–3622.
  • Bian WF, Wang H, Zhang H, et al. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots. Luminescence. 2015;30(7):1064–1070.
  • Fernández-Argüelles MT, Jin JW, Costa-Fernández JM, et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (II) in aqueous solutions by luminescent measurements. Anal Chim Acta. 2005;549(1–2):20–25.
  • Ghaedi MF, Ahmadi F, Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater. 2007;142(1–2):272–278.
  • Akl MAA, Kenawy MMI, Lasheen RR. Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems. Microchem J. 2004;78(2):143–156.
  • Sorouraddin MH, Iranifam M, Imani-Nabiyyi A. A novel captopril chemiluminescence system for determination of copper (II) in human hair and cereal flours. J Fluoresc. 2009;19(4):575–581.
  • Larner F, Rehkämper M, Coles JB, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS. J Anal At Spectrom. 2011;26(8):1627–1632.
  • Vanatta LE, Vanatta JC, Riviello J. Ion-chromatographic study of the possible absorption of copper and zinc by the skin of Rana pipiens. J Chromatogr A. 2000;884(1–2):143–150.
  • Willemse CM, Tlhomelang K, Jahed N, et al. Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors. 2011;11(4):3970–3987.
  • Mir SA. Resorcinol method for colorimetric micro determination of copper in pure forms. Inter J Chem Tech Res. 2011;3(2):661–670.
  • Beiraghi A, Babaee S, Roshdi M. A selective optical sensor for beryllium determination based on incorporating of 1, 8-dihydroxyanthrone in a poly (vinyl chloride) membrane. J Hazard Mater. 2011;190(1–3):962–968.
  • Oliveira E, Núñez C, Santos MH, et al. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sens Actuators B. 2015;212:297–328.
  • Baig FMM, Chen TC, Chen CY. Photoluminescence determination of aluminum using glutathione capped gold nanoclusters. Anal Lett. 2016;49(14):2246–2258.
  • Yang X, Yang L, Dou Y, et al. Synthesis of highly fluorescent lysine-stabilized Au nanoclusters for sensitive and selective detection of Cu2+ ion. J Mater Chem. 2013;1(41):6748–6751.
  • Duan J, Jiang X, Ni S, et al. Facile synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta. 2011;85(4):1738–1743.
  • Komova NS, Serebrennikova KV, Berlina AN, et al. Mercaptosuccinic acid functionalized gold nanoparticles for highly sensitive colorimetric sensing of Fe(III) ions. Chemosensors. 2021;9:290, DOI:10.3390/chemosensors9100290.
  • Jin W, Huang P, Wu F, et al. Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst. 2015;140:3507–3513.
  • Almaquer FEP, Ricacho JSY, Ronquillo RLG. Simple and rapid colorimetric sensing of Ni(II) ions in tap water based on aggregation of citrate-stabilized silver nanoparticles. Sustain Environ Res. 2019;29:23, DOI:10.1186/s42834-019-0026-3.
  • Kakhki MR, Rakhshanipour M. Application of nanoparticle modified with crown ether in colorimetric determinations. Arab J Chem. 2019;12(8):3096–3107.
  • Priyadarshini E, Pradhan N. Metal-induced aggregation of valine capped gold nanoparticles: an efficient and rapid approach for colorimetric detection of Pb2+ ions. Sci Rep. 2017;7(1):9278, DOI:10.1038/s41598-017-08847-5.
  • Yu C, Tang J, Liu X, et al. Green biosynthesis of silver nanoparticles using Eriobotrya japonica (thunb.) leaf extract for reductive catalysis. Materials (Basel). 2019;12(1):189, DOI:10.3390/ma12010189.
  • Akinsiku AA, Dare OE, Ajanaku OK, et al. Modeling and synthesis of Ag and Ag/Ni allied bimetallic nanoparticles by green method: optical and biological properties. Inter J Biomater. 2018;2018:9658080, DOI:10.1155/2018/9658080.
  • Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 2011;169(2):59–79.
  • Dan Z, Xin-Lei M, Yan G, et al. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020;8:799, DOI: 10.3389/fchem.2020.00799.
  • Naikoo AG, Mustaqeem M, Hassan UI, et al. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: a critical review. J Saudi Chem Soc. 2021;25(9):101304, DOI:10.1016/j.jscs.2021.101304.
  • Frezza C, Venditti A, Vita DD, et al. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—a review. Plants. 2020;9(7):888, DOI:10.3390/plants9070888.
  • Ashraf A, Zafar S, Zahid K, et al. Synthesis, characterization, and antibacterial potential of silver nanoparticles synthesized from Coriandrum sativum L. J Infect Public Health. 2019;12(2):275–281.
  • Riaz T, Mughal P, Shahzadi T, et al. Green synthesis of silver nickel bimetallic nanoparticles using plant extract of Salvadora persica and evaluation of their various biological activities. Mater Res Express. 2020;6(12):126452. DOI:10.1088/2053-1591/ab74fc.
  • Beiraghi A, Najibi-Gehraz AS. Carbon dots-modified silver nanoparticles as a new colorimetric sensor for selective determination of cupric ions. Sens Actuators B. 2017;253:342–351.
  • Zaib M, Malik T, Akhtar N, et al. Sensitive detection of sulphide ions using green synthesized monometallic and bimetallic nanoparticles: comparative study. Biomass Waste Valorization. 2022;13:2447–2459. DOI: 10.1007/s12649-021-01665-x.
  • Ambreen J, Al-Harbi FF, Sakhawat H, et al. Fabrication of poly (N-vinylcaprolactam-co-acrylic acid)-silver nanoparticles composite microgel with substantial potential of hydrogen peroxide sensing and catalyzing the reduction of water pollutants. J Mol Liq. 2022;355:118931.
  • Siddiq M, Bakhat K, Ajmal M. Stimuli responsive microgel containing silver nanoparticles with tunable optical and catalytic properties. Pure Appl Chem. 2020;92(3):445–459.
  • Garibo D, Borbon-Nunez HA, de León JND, et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep. 2020;10:12805, DOI:10.1038/s41598-020-69606-7.
  • Padilla-Cruz AL, Garza-Cervantes JA, Vasto-Anzaldo XG, et al. Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens. Sci Rep. 2021;11:5351, DOI:10.1038/s41598-021-84768-8.
  • Fakhri A, Tahami S, Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B. 2017;169:21–26.
  • Harshiny M, Matheswaran M, Arthanareeswaran G, et al. Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol Environ Safety. 2015;121:135–141.
  • Chekin F, Vahdat MS, Asadi JM. Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior. Russ J Appl Chem. 2016;89(5):816–822.
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12(8):1823–1838.
  • Alagumuthu G, Kirubha R. Synthesis and characterization of silver nanoparticles in different medium. Open J Synthesis Theory Applications. 2012;01(02):13–17.
  • Khalil HMM, Ismail HE, El-Baghdady ZK, et al. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014;7(6):1131–1139.
  • Padalia H, Moteriya P, Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem. 2015;8(5):732–741.
  • Uddin S, Safdar BL, Anwar S, et al. Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules. 2021;26(6):1548, DOI: 10.3390/molecules26061548.
  • Femi-Adepoju AG, Dada AO, Otun KO, et al. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia pectinata (Willd.) C. presl.): characterization and antimicrobial studies. Heliyon. 2019;5(4):e01543, DOI:10.1016/j.heliyon.2019.e01543.
  • Zhang Y, Mahdavi B, Hosseini MM, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: chemical characterization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem. 2021;14(5):103105, DOI:10.1016/j.arabjc.2021.103105.
  • Shang Y, Wu F, Qi L. Highly selective colorimetric assay for nickel ion using N-acetyl-l-cysteine-functionalized silver nanoparticles. J Nanoparticle Res. 2012;14:1169, DOI:10.1007/s11051-012-1169-x.
  • Sadollahkhani A, Hatamie A, Nur O, et al. Colorimetric disposable paper coated with ZnO@ ZnS core–shell nanoparticles for detection of copper ions in aqueous solutions. ACS Appl Mater Inter. 2014;6(20):17694–17701.
  • Dutta S, Ray C, Sarkar S, et al. Facile synthesis of bimetallic Au-Pt, Pd-Pt, and Au-Pd nanostructures: enhanced catalytic performance of Pd-Pt analogue towards fuel cell application and electrochemical sensing. Electrochim Acta. 2015;180:1075–1084.
  • Musso BT, Parolo EM, Pettinari G. Ph, ionic strength, and ion competition effect on Cu (II) and Ni (II) sorption by a Na-bentonite used as liner material. Pol J Environ Stud. 2019;28(4):2299–2309.
  • Yuan Z, Cai N, Du Y, et al. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem. 2014;86(1):419–426.
  • Mahmood K, Amara U, Siddique S, et al. Green synthesis of Ag@CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. J Nanostructure Chem. 2022;12(3):329–341.
  • Naeem H, Ajmal M, Khan ZS, et al. Anionic hydrogel fabricated with metal nanoparticles: highly efficient and easily recyclable catalysts. Soft Mater. 2021;19(4):480–494.
  • Ajmal M, Siddiq M, Aktas N, et al. Magnetic Co-Fe bimetallic nanoparticle containing modifiable microgels for the removal of heavy metal ions, organic dyes and herbicides from aqueous media. RSC Adv. 2015;5(54):43873–43884.
  • Chen D, Li C, Liu H, et al. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Sci Rep. 2015;5:11949, DOI:10.1038/srep11949.