831
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gut bacterial diversity on the basis of feeding behaviour in different species of thrips (Thysanoptera)

, , , & ORCID Icon
Pages 863-873 | Received 23 Nov 2021, Accepted 06 Sep 2022, Published online: 14 Sep 2022

References

  • Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol. 2004;49:71–92.
  • Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
  • Douglas AE. The ecology of symbiotic micro-organisms. Adv Ecol Res. 1995;26:69–103.
  • Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Ann Rev Entomol. 2015;60:17–34.
  • Tang X, Freitak D, Vogel H, et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PloS one. 2012;7:e36978.
  • Paniagua Voirol LR, Frago E, Kaltenpoth M, et al. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 2018;9:556.
  • Mason CJ, St Clair A, Peiffer M, et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS one. 2020;15:e0229848.
  • Leite-Mondin M, DiLegge MJ, Manter DK, et al. The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci Rep. 2021;11:5786. doi:10.1038/s41598-021-85057-0.
  • Wang Y, Su L, Huang S, et al. Diversity and resilience of the wood-feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations. Ecol Evol. 2016;6:8235–8242.
  • Su L, Yang L, Huang S, et al. Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets. Appl Biochem Biotechnol. 2017;181:32–47.
  • Calusinska M, Marynowska M, Bertucci M, et al. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275. doi:10.1038/s42003-020-1004-3.
  • Zheng X, Zhu Q, Zhou Z, et al. Gut bacterial communities across 12 Ensifera (Orthoptera) at different feeding habits and its prediction for the insect with contrasting feeding habits. Plos one. 2021;16:e0250675. doi:10.1371/journal.pone.0250675.
  • Ng SH, Stat M, Bunce M, et al. The influence of diet and environment on the gut microbial community of field crickets. Ecol Evol. 2018;8:4704–4720.
  • Tinker KA, Ottesen EA. Differences in gut microbiome composition between sympatric wild and allopatric laboratory populations of omnivorous cockroaches. Front Microbiol. 2021;12:703785. doi:10.3389/fmicb.2021.703785.
  • ThripsWiki. ThripsWiki – providing information on the world’s thrips. [cited 2021 Sept 31]. Available from: https://thrips.info/wiki/.
  • Tyagi K, Kumar V. Thrips (Insecta: Thysanoptera) of India-an updated checklist. Halteres. 2016;7:64–98.
  • Riley DG, Joseph SV, Srinivasan R, et al. Thrips vectors of tospoviruses. J Int Pest Manage. 2011;1:1–10. doi:10.1603/IPM10020.
  • De Vries EJ, Breeuwer JAJ, Jacobs G, et al. The association of western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol. 2001a;77:120–128. doi:10.1006/jipa.2001.5009.
  • De Vries EJ, Jacobs G, Breeuwer JAJ. Growth and transmission of gut bacteria in the western flower thrips, Frankliniella occidentalis. J Invertebr Pathol. 2001b;77:129–137.
  • De Vries EJ, Jacobs G, Sabelis MW, et al. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc R Soc B-Biol Sci. 2004;271:2171–2178.
  • De Vries EJ, Van De Wetering F, Van Der Hoek MM, et al. Symbiotic bacteria (Erwinia sp.) in the gut of Frankliniella occidentalis (Thysanoptera: Thripidae) do not affect its ability to transmit tospovirus. European J Entomol. 2012;109:261–266.
  • Dickey AM, Trease AJ, Jara-Cavieres A, et al. Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. Florida Entomol. 2014;97:362–366.
  • Kaczmarczyk A, Kucharczyk H, Kucharczyk M, et al. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep. 2018;8:1–13.
  • Gawande SJ, Anandhan S, Ingle A, et al. Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). PloS one. 2019;14:e0223281.
  • Ananthakrishnan TN, Jagadish A. Gall-inhabiting Liothrips Uzel from India. Orient Insects. 1969;2:205–217.
  • Ananthakrishnan TN. Studies on some Indian species of the genus Elaphrothrips Buffa (Megathripinae: Tubulifera: Thysanoptera). Pac Insects. 1973;15:271–284.
  • Ananthakrishnan TN, Sen S. (1980). Taxonomy of Indian Thysanoptera. Handbook Series No. 1. Zoological Survey of India, Government of India.
  • Mound LA, Tree DJ. Identification and host-plant associations of Australian Sericothripinae (Thysanoptera: Thripidae). Zootaxa. 2009;1983:1–22.
  • Mound LA. Grass-dependent Thysanoptera of the family Thripidae from Australia. Zootaxa. 2011;3064:1–40.
  • Ng YF, Mound LA. The Stenchaetothrips species (Thysanoptera, Thripidae) of Malaysia, with one new species. Zootaxa. 2012;3357:56–62.
  • Okajima S. The insects of Japan. Volume 2. The suborder Tubulifera (Thysanoptera). Fukuoka: Touka Shobo Co. Ltd; 2006, pp. 1–720.
  • Palmer JM, Mound LA. Nine genera of fungus-feeding Phlaeothripidae (Thysanoptera) from the Oriental Region. Bull Brit Mus (Nat Hist) Entomol. 1978;37:153–215.
  • Wilson TH. A monograph of the subfamily Panchaetothripinae (Thysanoptera: Thripidae). Mem Am Entomol Inst. 1975;23:1–354.
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583.
  • Dhariwal A, Chong J, Habib S, et al. Microbiomeanalyst—a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:180–188. doi:10.1093/nar/gkx295.
  • Chong J, Liu P, Zhou G, et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020. doi:10.1038/s41596-019-0264-1.
  • Bardou P, Mariette J, Escudié F, et al. Jvenn: an interactive Venn diagram viewer. BMC Bioinf. 2014;15:293–300.
  • Langille MGI. Exploring linkages between taxonomic and functional profiles of the human microbiome. mSystems. 2018;3:e00163–17. doi:10.1128/mSystems.00163-17.
  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–1951. doi:10.1002/pro.3715.
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
  • Kanehisa M, Sato Y, Furumichi M, et al. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47:D590–D595. doi:10.1093/nar/gky962.
  • Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–3124. doi:10.1093/bioinformatics/btu494.
  • Vaz MGMV, Almeida AVM, Castro NV, et al. Carbon and nitrogen metabolism in cyanobacteria: basic traits, regulation and biotechnological application. In: Handbook of algal science, technology and medicine; 2020. p. 245–254. doi:10.1016/b978-0-12-818305-2.00015-2.
  • Karamipour N, Fathipour Y, Mehrabadi M. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Sci Rep. 2016;6:1–13. doi:10.1038/srep33168.
  • Kashkouli M, Fathipour Y, Mehrabadi M. Heritable Gammaproteobacterial symbiont improves the fitness of Brachynema germari Kolenati (Hemiptera: Pentatomidae). Environ Entomol. 2019;48:1079–1087.
  • Zhang J, Zhang Y, Xue Y, et al. Research advances on a secondary endosymbiont Rickettsia in insect. J Environ Entomol. 2017;39:431–443.
  • Lenaerts M, Goelen T, Paulussen C, et al. Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol. 2017;31:2061–2069.
  • Ranjith MT, Harish ER, Girija D, et al. Bacterial communities associated with the gut of tomato fruit borer, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) based on Illumina next-generation sequencing. J Asia-Pacific Entomol. 2016;19:333–340.
  • Delalibera I, Handelsman J, Raffa KF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Env Entomol. 2005;34:541–547.
  • Vasanthakumar A, Handelsman J, Schloss PD, et al. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Env Entomol. 2008;37:1344–1353.
  • Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, et al. Gut-associated bacteria throughout the life cycle of the Bark Beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol. 2012;64:268–278. doi:10.1007/s00248-011-9999-0.
  • Vilanova C, Baixeras J, Latorre A, et al. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol. 2016;7:1005.
  • Ma Q, Cui Y, Chu X, et al. Gut bacterial communities of Lymantria xylina and their associations with host development and diet. Microorganisms. 2021;9:1860. doi:10.3390/microorganisms9091860.
  • Michell C, Nyman T. Microbiomes of willow-galling sawflies: effects of host plant, gall type, and phylogeny on community structure and function. Genome. 2021: 64:1–12.
  • Pinto-Tomas AA, Sittenfeld A, Uribe-Lorio L, et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ Entomol. 2011;40:1111–1122.
  • Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one. 2012;7:e38544.
  • Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev. 2015;90:89–111.
  • Beukeboom LW, Perrin N. The evolution of sex determination. USA: Oxford University Press; 2014.
  • Saurav GK, Daimei G, Rana VS, et al. Detection and localization of Wolbachia in Thrips palmi Karny (Thysanoptera: Thripidae). Indian J Microbiol. 2016;56:167–171.