1,069
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Light to heat conversion efficiency of single-walled carbon nanotubes

Pages 923-932 | Received 07 Apr 2022, Accepted 13 Sep 2022, Published online: 26 Sep 2022

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–605.
  • LeMieux MC, Roberts M, Barman S, et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science. 2008;321(5885):101–104.
  • Barone PW, Baik S, Heller DA, et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater. 2005;4(1):86–92.
  • Baughman RH, Cui C, Zakhidov AA, et al. Carbon nanotube actuators. Science. 1999;284(5418).
  • Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.
  • Opatkiewicz J, Lemieux MC, Bao Z. Nanotubes on display: How carbon nanotubes can be integrated into electronic displays. ACS Nano. 2010;4(6):2975–2978.
  • Ouyang M, Huang JL, Lieber CM. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res. 2002;35(12):1018–1025.
  • Odom TW, Huang JL, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998;391(6662):62–64.
  • Murakami T, Nakatsuji H, Inada M, et al. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J Am Chem Soc. 2012;134(43):17862–17865.
  • De La Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3(9):557–562.
  • Fukuda R, Umeyama T, Tsujimoto M, et al. Sustained photodynamic effect of single chirality-enriched single-walled carbon nanotubes. Carbon. 2020;161:718–725.
  • Von Maltzahn G, Centrone A, Park JH, et al. SERS-coded cold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater. 2009;21(31):3175–3180.
  • Chen H, Shao L, Ming T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals. Small. 2010;6(20):2272–2280.
  • Lyu Y, Zeng J, Jiang Y, et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano. 2018;12(2):1801–1810.
  • Chen Y, Cheng L, Dong Z, et al. Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics. Angew Chem. 2017;129(42):13171–13176.
  • Zhou Z, Sun Y, Shen J, et al. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials. 2014;35(26):7470–7478.
  • Yoon HJ, Lee HS, Lim JY, et al. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces. 2017;9(7):5683–5691.
  • Geng B, Shen W, Fang F, et al. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-II window with high efficiency. Carbon. 2020;162:220–233.
  • Peng X, Wang R, Wang T, et al. Carbon dots/prussian blue satellite/core nanocomposites for optical imaging and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(1):1084–1092.
  • Zheng M, Li Y, Liu S, et al. One-Pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces. 2016;8(36):23533–23541.
  • Lan M, Zhao S, Zhang Z, et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017;10(9):3113–3123.
  • Maestro LM, Haro-González P, Del Rosal B, et al. Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale. 2013;5(17):7882–7889.
  • Reich S, Thomsen C, Maultzsch J.. Carbon Nanotubes: basic concepts and physical properties. John Wiley & Sons; 2007.
  • Naumov AV, Ghosh S, Tsyboulski DA, et al. Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano. 2011;5(3):1639–1648.
  • Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of graphene tubules based on C60. Phys Rev B. 1992;46(3):1804.
  • Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes. Synth Met. 1999;103(1-3):2555–2558.
  • Sanchez SR, Bachilo SM, Kadria-Vili Y, et al. (N,m)-specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano Lett. 2016;16(11):6903–6909.
  • Jain RM, Howden R, Tvrdy K, et al. Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater. 2012;24(32):4436–4439.
  • Watts BP, Barbee CH, Tvrdy K. Exploiting the physiochemical interactions between single-walled carbon nanotubes and hydrogel microspheres to afford chirally pure nanotubes. ACS Appl Nano Mater. 2019;2(6):3615–3625.
  • Dolan M, Watts BP, Tvrdy K. Tailored synthesis of hydrogel media for chirality separation of single walled carbon nanotubes. Carbon. 2021;171:597–609.
  • Alrahili M, Peroor R, Savchuk V, et al. Morphology dependence in photothermal heating of gold nanomaterials with near-infrared laser. J Phys Chem C. 2020;124(8):4755–4763.
  • Jiang K, Smith DA, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C. 2013;117(51):27073–27080.
  • Lv R. Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem Mater. 2016;28(13):4724–4734.
  • Sinha S, et al. Off-axis thermal properties of carbon nanotube films. J Nanoparticle Res. 2005;7(6):651–657.