800
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Degradation of cosmetic ingredient methylparaben by zinc oxide nanoparticles, aided by sonication, light or a combination of sonication and light

ORCID Icon, , , &
Pages 976-987 | Received 26 Dec 2021, Accepted 29 Sep 2022, Published online: 13 Oct 2022

References

  • Terasaki M, Makino M, Tatarazako N. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. J Appl Toxicol. 2009;29(3):242–247.
  • Asgari E, Esrafili A, Rostami R, et al. O3, O3/UV and O3/UV/ZnO for abatement of parabens in aqueous solutions: effect of operational parameters and mineralization/biodegradability improvement. Process Saf Environ Prot. 2019;125:238–250.
  • Mincea MM, Lupsa IR, Cinghita DF, et al. Determination of methylparaben from cosmetic products by ultra performance liquid chromatography. J Serb Chem Soc. 2009;74(6):669–676.
  • Lee J-W, Lee H-K, Moon H-B. Contamination and spatial distribution of parabens, their metabolites and antimicrobials in sediment from Korean coastal waters. Ecotoxicol Environ Saf. 2019;180:185–191.
  • Zúñiga-Benítez H, Peñuela GA. Methylparaben removal using heterogeneous photocatalysis: effect of operational parameters and mineralization/biodegradability studies. Environ Sci Pollut Res. 2017;24(7):6022–6030.
  • Shirasangi R, Kohli HP, Gupta S, et al. Separation of methylparaben by emulsion liquid membrane: optimization, characterization, stability and multiple cycles studies. Colloids Surf, A. 2020;597:Article 124761.
  • Gupta P, Pushkala K. Parabens: The love-hate molecule. Obstet Gynecol. 2020;3:037–038.
  • Haider, K., Rehman K, Sabir A, et al., Parabens as endocrine disrupting chemicals and their association with metabolic disorders. In: Akash MSH, Rehman K, Hashmi MZ, editors. Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Cham: Springer; 2020. p. 367–379.
  • Baker BH, Wu H, Laue HE, et al. Methylparaben in meconium and risk of maternal thyroid dysfunction, adverse birth outcomes, and attention-deficit hyperactivity disorder (ADHD). Environ Int. 2020;139:Article 105716.
  • Ngigi EM. Photocatalytic degradation of parabens in aqueous solutions with modified tungsten oxide nanoparticles. Johannesburg: University of Johannesburg; 2018.
  • Khalafi T, Buazar F, Ghanemi K. Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci Rep. 2019;9(1):1–10.
  • Ijaz I, Gilani E, Nazir A, et al. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):223–245.
  • Al-Hakkani MF. Biogenic copper nanoparticles and their applications: A review. SN Appl Sci. 2020;2(3):1–20.
  • Buazar F. Impact of biocompatible nanosilica on green stabilization of subgrade soil. Sci Rep. 2019;9(1):1–9.
  • Moavi J, Buazar F, Sayahi MH. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci Rep. 2021;11(1):1–14.
  • Saleh TA. Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov. 2020;20:Article 101067.
  • Mano G, Harinee S, Sridhar S, et al. Microwave assisted synthesis of ZnO-PbS heterojuction for degradation of organic pollutants under visible light. Sci Rep. 2020;10(1):1–14.
  • Gao F. An overview of surface-functionalized magnetic nanoparticles: preparation and application for wastewater treatment. ChemistrySelect. 2019;4(22):6805–6811.
  • Zanias A, Frontistis E, Vakros J, et al. Degradation of methylparaben by sonocatalysis using a Co–Fe magnetic carbon xerogel. Ultrason Sonochem. 2020;64.
  • Yashni G, Al-Gheethi A, Mohamed R, et al. Photocatalysis of xenobiotic organic compounds in greywater using zinc oxide nanoparticles: a critical review. Water Environ J. 2020;35(1):190–217.
  • Safat S, Buazar F, Albukhaty S, et al. Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci Rep. 2021;11(1):1–11.
  • Asgari E, Hashemzadeh B, Hassani G, et al. Enhancement the BuP photo-catalytic degradability by UVC/ZnO through adding exogenous oxidant: mechanism, kinetic, energy consumption. J Environ Chem Eng. 2020;8(1):Article 103576.
  • Sheikhmohammadi A, Asgari E, Manshouri M. Enhancement the phenylmethyl ester photo degradability in the presence of O3 and H2O2. Optik (Stuttg). 2021;228:Article 166204.
  • Yap H, Pang YL, Lim S, et al. A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. Int J Environ Sci Technol. 2019;16(1):601–628.
  • Moradi M, Elahinia A, Vasseghian Y, et al. A review on pollutants removal by sono-photo-Fenton processes. J EnvironChem Eng. 2020;8(5):Article 104330.
  • Arslan E, Hekimoglu BS, Cinar SA, et al. Hydroxyl radical-mediated degradation of salicylic acid and methyl paraben: an experimental and computational approach to assess the reaction mechanisms. Environ Sci Pollut Res. 2019;26(32):33125–33134.
  • Edison TJI, Sethuraman M. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012;47(9):1351–1357.
  • Alves MM, Araujo JMM, Martins IC, et al. Insights into the interaction of bovine serum albumin with surface-active ionic liquids in aqueous solution. J Mol Liq. 2020;322:Article 114537.
  • Tritt TM. Thermal conductivity: theory, properties, and applications. New York: Springer; 2004.
  • Castro I, Teixeira JA, Salengke S, et al. Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innov Food Sci Emerg Technol. 2004;5(1):27–36.
  • Calloway D. Beer-Lambert law. J Chem Educ. 1997;74(7):744.
  • Dhahir SA, Hussein H. Spectrophotometric determination of methyl paraben in pure and pharmaceutical oral solution. Adv Nat Sci. 2013;6:69–74.
  • Sheikhmohammadi A, Asgari E, Hashemzadeh B, et al. The application of co-oxidant in order to enhancement the parabens photo-catalytic degradability. Optik (Stuttg). 2020;224:Article 165667.
  • Ullah I, Ali F, Ali Z, et al. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange. Mater Res Express. 2018;5(5):Article 055509.
  • Becheri A, Dürr M, Nostro PL, et al. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res. 2007;10(4):679–689.
  • Buazar F, Alipouryan S, Kroushawi F, et al. Photodegradation of odorous 2-mercaptobenzoxazole through zinc oxide/hydroxyapatite nanocomposite. Appl Nanosci. 2015;5(6):719–729.
  • Buazar F, Bavi M, Kroushawi F, et al. Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. J Exp Nanosci. 2016;11(3):175–184.
  • Du Y, Wang R, Yue H, et al. Dose response and stability of silicone-based deformable radiochromic dosimeters (FlexyDos3D) using spectrophotometer and flatbed scanner. Radiat Phys Chem. 2020;168:Article 108574.
  • Jayarambabu N, Kumari BS, Rao KV, et al. Beneficial role of zinc oxide nanoparticles on green crop production. Int J Multidiscip Adv Res Trends. 2015;10:273–282.
  • Zak AK, Razali R, Abu Majid WHB, et al. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed. 2011;6:1399–1403.
  • Kasi G, Seo J. Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater Sci Eng C. 2019;98:717–725.
  • Wang X, Sun T, Zhu H, et al. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. J Environ Manage. 2020;267:Article 110656.
  • Bampos G, Frontistis Z. Sonocatalytic degradation of butylparaben in aqueous phase over Pd/C nanoparticles. Environ Sci Pollut Res. 2019;26(12):11905–11919.
  • Larrarte F, Francois P. Attenuation of an ultrasonic beam by suspended particles and range of acoustic flow meters in sewer networks. Water Sci Technol. 2012;65(3):478–483.
  • Yaqoob A, Noor N, Umar K, et al. Graphene oxide-ZnO nanocomposite: an efficient visible light photocatalyst for degradation of rhodamine B. Appl Nanosci. 2021;11(4):1291–1302.
  • Chakma S, Moholkar VS. Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem. 2015;22:287–299.
  • Kroflič, A., A. Apelblat, and M. Bešter-Rogač. Dissociation constants of parabens and limiting conductances of their ions in water. J Phys Chem B. 2012;116(4):1385–1392.
  • Berberidou C, Poulios I, Xekoukoulotakis NP, et al. Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl Catal, B. 2007;74(1-2):63–72.
  • Sasi S, Rayaroth MP, Devadasan D, et al. Influence of inorganic ions and selected emerging contaminants on the degradation of methylparaben: a sonochemical approach. J Hazard Mater. 2015;300:202–209.
  • Chatterjee D, Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C. 2005;6(2-3):186–205.
  • Ameta R, Benjamin R, Ameta A, et al. Photocatalytic degradation of organic pollutants: A review. Mater Sci Forum. 2012;734:247–272.
  • Fang H, Gao Y, Li G, et al. Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of TiO2 and risk assessment of its degradation products. Environ Sci Technol. 2013;47(6):2704–2712.
  • Suliman MA, Gondal MA, Dastageer MA, et al. Method for visible light-induced photocatalytic degradation of methylparaben in water using nanostructured Ag/AgBr@ m-WO3. Photochem Photobiol. 2019;95(6):1485–1494.
  • Joseph CG, Puma GL, Bono A, et al. Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem. 2009;16(5):583–589.
  • Karim AV, Shriwastav A. Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways. Chem Eng J. 2020;392:Article 124853.
  • Kalpana V, Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl. 2018;2018:Article 3569758.
  • Chantipmanee N, Sonsa-ard T, Fukana N, et al. Contactless conductivity detector from printed circuit board for paper-based analytical systems. Talanta. 2020;206:Article 120227.