1,428
Views
5
CrossRef citations to date
0
Altmetric
Research Article

High activity of ZnFe2O4 nanoparticles for photodegradation of crystal violet dye solution in the presence of sunlight

ORCID Icon
Pages 988-1004 | Received 18 Apr 2022, Accepted 07 Oct 2022, Published online: 24 Oct 2022

References

  • Alharbi FF, Manzoor S, Munawar T, et al. Sunlight activated S-scheme ZnO-CoTe binary photocatalyst for effective degradation of dye pollutants from wastewater. Surf Inter. 2022;31:1–10. doi:10.1016/j.surfin.2022.101991.
  • Alharbi FF, Aman S, Ahmad N, et al. Visible light active SrZrO3/PbS nanocomposite for photoconversion of CO2 into methane and methanol. Appl Phys A: Mater Sci Process. 2022;128(3):1–11. doi:10.1007/s00339-022-05383-6.
  • Li X, Liu J, Huang J, et al. All organic s-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. 2021;37(6):1–14. doi:10.3866/PKU.WHXB202010030.
  • Soufi A, Hajjaoui H, Elmoubarki R, et al. Heterogeneous fenton-like degradation of tartrazine using CuFe2O4 nanoparticles synthesized by sol-gel combustion. Appl Surf Sci Adv. 2022;9:1–12. doi:10.1016/j.apsadv.2022.100251.
  • Alburaih HA, Aadil M, Ejaz SR, et al. Wet-chemical synthesis of urchin-like Co-doped CuO: A visible light trigger photocatalyst for water remediation and antimicrobial applications. Ceram Int. 2022;48(15):21804–21813. doi:10.1016/j.ceramint.2022.04.159.
  • Modi S, Fulekar MH. Synthesis and characterization of zinc oxide nanoparticles and zinc oxide/cellulose nanocrystals nanocomposite for photocatalytic degradation of methylene blue dye under solar light irradiation. Nano Environ Eng. 2020;5(18):1–12. doi:10.1007/s41204-020-00080-2.
  • Shen R, Zhang L, Chen X, et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Appl Catal, B. 2020;266:1–9. doi:10.1016/j.apcatb.2020.118619.
  • Dai Z, Zhen Y, Sun Y, et al. Znfe2o4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. Chem Eng J. 2021;415:1–10. doi:10.1016/j.cej.2021.129002.
  • Charradi K, Ahmed Z, BenMoussa MA, et al. A facile approach for the synthesis of spinel zinc ferrite/cellulose as an effective photocatalyst for the degradation of methylene blue in aqueous solution. Cellulose. 2022;29(4):2565–2576. doi:10.1007/s10570-021-04334-3.
  • He R, Chen R, Luo J, et al. Fabrication of graphene quantum dots modified BiOI/PAN flexible fiber with enhanced photocatalytic activity. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. 2021;37(6):1–9. doi:10.3866/PKU.WHXB202011022.
  • Al Aqad KM, Basheer C. Photocatalytic degradation of basic blue dye using zinc nanoparticles decorated graphene oxide nanosheet. J Phys Org Chem. 2021;34:1–9. doi:10.1002/poc.4117.
  • Liu D, Chen S, Li R, et al. Review of Z-scheme heterojunctions for photocatalytic energy conversion. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. 2021;37(6):1–31. doi:10.3866/PKU.WHXB202010017.
  • Lu Y-B, Wang HC, She X-Y, et al. A novel preparation of GO/NiFe2O4/TiO2 nanorod arrays with enhanced photocatalytic activity for removing unsymmetrical dimethylhydrazine from water. Mater Sci Semicond Process. 2021;121:1–10. doi:10.1016/j.mssp.2020.105448.
  • Wageh S, Al-Ghamdi AA, Jafer R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin J Catal. 2021;42(5):667–669. doi:10.1016/S1872-2067(20)63705-6.
  • Wang W, Zhao W, Zhang H, et al. 2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-fenton catalytic activity. Chin J Catal. 2020;42(1):97–106. doi:10.1016/S1872-2067(20)63602-6.
  • Puneetha J, Kottam N, Rathna A. Investigation of photocatalytic degradation of crystal violet and its correlation with band gap in ZnO and ZnO/GO nanohybrid. Inorg Chem Commun. 2021;125:1–12. doi:10.1016/j.inoche.2021.108460.
  • Ameen S, Akhtar MS, Nazim M, et al. Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterial. Mater Lett. 2013;96:228–232. doi:10.1016/j.matlet.2013.01.034.
  • Liang R, Liang Z, Chen F, et al. Article (special issue on photocatalytic H2 production and CO2 reduction) sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: high performance, recyclable photocatalysts for fuel denitrification. Chin J Catal. 2020;41:188–199. http://www.sciencedirect.com/science/journal/18722067.
  • Wang H, Li X, Zhao X, et al. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin J Catal. 2022;43(2):178–214. doi:10.1016/S1872-2067(21)63910-4.
  • Cao D, Zhang J, Wang A, et al. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties. J Mater Sci Technol. 2020;56:189–195. doi:10.1016/j.jmst.2020.04.025.
  • Soufi A, Hajjoui H, Elmubaraki R, et al. Spinel ferrites nanoparticles: synthesis methods and application in heterogeneous fenton oxidation of organic pollutants – A review. Appl Surf Sci Adv. 2021;6:1–18. doi:10.1016/j.apsadv.2021.100145.
  • Reddy DHK, Yun Y-S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev. 2016;315:90–111. doi:10.1016/j.ccr.2016.01.012.
  • George L, Viji C, Maheen M, et al. Synthesis, characterization of Mg/Mn substituted Ni-Zn ferrites and mechanism of their visible light photo catalysis of methylene blue and rhodamine B dyes under magnetic influence. Mater Res Express. 2020;7:1–18. doi:10.1088/2053-1591/ab5d26.
  • Liang Z, Shen R, Ng YH, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol. 2020;56:89–121. doi:10.1016/j.jmst.2020.04.032.
  • Wei Z, Xu M, Liu J, et al. Article (special issue on photocatalytic H2 production and CO2 reduction) simultaneous visiblelight-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2 @Znx Cd1-x S: solid solution-assisted photocatalysis. Chin J Catal. 2020;41:103–113. http://www.sciencedirect.com/science/journal/18722067.
  • Chang CJ, Lee Z, Chu KW, et al. Cofe2o4@ZnS core–shell spheres as magnetically recyclable photocatalysts for hydrogen production. J Taiwan Inst Chem Eng. 2016;66:386–393. doi:10.1016/j.jtice.2016.06.033.
  • Chang CJ, Lee Z, Wei MD, et al. Photocatalytic hydrogen production by magnetically separable Fe3O4@ZnS and NiCo2O4@ZnS core-shell nanoparticles. Int J Hydrogen Energy. 2015;40(35):11436–11443. doi:10.1016/j.ijhydene.2015.01.151.
  • Shen R, Ren D, Ding Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials. 2020;63(11):2153–2188. doi:10.1007/s40843-020-1456-x.
  • Bai J, Shen R, Chen W, et al. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem Eng J. 2022;429:1–13. doi:10.1016/j.cej.2021.132587.
  • Ahmadpour N, Sayadi MH, Sobhani S, et al. A potential natural solar light active photocatalyst using magnetic ZnFe2O4 @ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution. J Cleaner Prod. 2020;268. doi:10.1016/j.jclepro.2020.122023.
  • Oliveira TP, Marques GN, Castro MAM, et al. Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light. J Mater Res Techn. 2020;9:15001–15015. doi:10.1016/j.jmrt.2020.10.080.
  • Qin M, Shuai Q, Wu G, et al. Zinc ferrite composite material with controllable morphology and its applications. Mater Sci Eng Bm. 2017;224:125–138. doi:10.1016/j.mseb.2017.07.016.
  • Semeraro P, Bettini S, Sawalha S, et al. Photocatalytic degradation of tetracycline by ZnO/γ-Fe2O3 paramagnetic nanocomposite material. Nanomaterials. 2020;10:1–12. doi:10.3390/nano10081458.
  • Chahar D, Taneja S, Bisht S, et al. Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J Alloys Compd. 2021;851:1–9. doi:10.1016/j.jallcom.2020.156878.
  • Gupta NK, Ghaffari Y, Kim S, et al. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-020-61930-2.
  • Hirthna, Sendhilnathan S, Rajan PI, et al. Synthesis and characterization of NiFe2O4 nanoparticles for the enhancement of direct sunlight photocatalytic degradation of methyl orange. J Supercond Novel Magn. 2018;31(10):3315–3322. doi:10.1007/s10948-018-4601-3.
  • Kalam A, Al-Sehemi AG, Assiri M, et al. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys. 2018;8:1046–1053. doi:10.1016/j.rinp.2018.01.045.
  • Nadeem N, Zahid M, Tabasum A, et al. Degradation of reactive dye using heterogeneous photo-fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Mater Res Express. 2020;7(1). doi:10.1088/2053-1591/ab66ee.
  • Bayahia H. Green synthesis of activated carbon doped tungsten trioxide photocatalysts using leaf of basil (ocimum basilicum) for photocatalytic degradation of methylene blue under sunlight. J Saudi Chem Soc. 2022;26(2): 101432–110144. doi:10.1016/j.jscs.2022.101432.
  • Taj MB, Alkahtani MDF, Raheel A, et al. Bioconjugate synthesis, phytochemical analysis, and optical activity of NiFe2O4 nanoparticles for the removal of ciprofloxacin and Congo red from water. Sci Rep. 2021;11(1):1–19. doi:10.1038/s41598-021-84983-3.
  • Lakshmi Ranganatha V, Pramila S, Nagaraju G, et al. Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using aegle marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J Mater Sci: Mater Electron. 2020;31(20):17386–17403. doi:10.1007/s10854-020-04295-6.
  • Rahmayeni, Febrialita R, Stiadi Y, et al. Simbang darah (iresine herbstii) extract mediated hydrothermal method in the synthesis of zinc ferrite spinel nanoparticles used for photocatalysis and antibacterial applications. J Environ Chem Eng. 2021;9(2). doi:10.1016/j.jece.2021.105140.
  • Marzouk AA, Abu-Dief AM, Abdelhamid AA. Hydrothermal preparation and characterization of ZnFe2O4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi-substituted imidazoles and study of their anti-inflammatory activity. Appl Organomet Chem. 2018;32(1). doi:10.1002/aoc.3794.
  • Nguyen LTT, Vo DVN, Nguyen LTH, et al. Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of rhodamine B under visible-light illumination. Environ Techn Innov. 2022;25:1–15. doi:10.1016/j.eti.2021.102130.
  • Faheem M, Jiang X, Wang L, et al. Synthesis of Cu2O-CuFe2O4 microparticles from fenton sludge and its application in the fenton process: The key role of Cu2O in the catalytic degradation of phenol. RSC Adv. 2018;8(11):5740–5748. doi:10.1039/c7ra13608k.
  • Zhang X, Li H, Wang S, et al. Improvement of hematite as photocatalyst by doping with tantalum. J Phys Chem C. 2014;118(30):16842–16850. doi:10.1021/jp500395a.
  • Granone LI, Ulpe AC, Robben L, et al. Effect of the degree of inversion on optical properties of spinel ZnFe2O4. Phys Chem Chem Phys. 2018;20(44):28267–28278. doi:10.1039/c8cp05061a.
  • Yang Y, Liu B, Xu J, et al. The synthesis of h–BN-modified Z–scheme WO3/g–C3N4 heterojunctions for enhancing visible light photocatalytic degradation of tetracycline pollutants. ACS Omega. 2022;7:6035–6045. doi:10.1021/acsomega.1c06377.
  • Qutub N, Singh P, Sabir S, et al. Enhanced photocatalytic degradation of acid blue dye using CdS/TiO2 nanocomposite. Sci Rep. 2022;12(1):1–18. doi:10.1038/s41598-022-09479-0.
  • Xue L, Liang E, Wang J. Fabrication of magnetic ZnO/ZnFe2O4/diatomite composites: improved photocatalytic efficiency under visible light irradiation. J Mater Sci: Mater Electron. 2022;33(3):1405–1424. doi:10.1007/s10854-021-07568-w.