357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Break-up effect on 7Li + 28Si elastic scattering angular distributions

, &
Pages 1026-1034 | Received 19 Apr 2022, Accepted 08 Oct 2022, Published online: 24 Oct 2022

References

  • Pakou A, et al. Elastic scattering of 7 Li + 28 Si at near-barrier energies. Phys Rev C. 2004;69:054602.
  • Sinha M, et al. Coupled channel effect in elastic scattering and fusion for 6,7Li+28Si. EPJ Web of Conferences. 2011;17:03004.
  • Schumacher P, et al. Lithium elastic and inelastic scattering and lithium-induced single nucleon transfer reactions. Nucl Phys A. 1973;212:573.
  • Bethge K, Fou CM, Zurmuhle RW. Elastic scattering of lithium nuclei. Nucl Phys A. 1969;123:521.
  • Eck JS, et al. Optical model and coupled-channels analysis of 7Li + 28Si and 7Li + 40Ca scattering. Phys Rev C. 1982;25:2391.
  • Madhusoodhanan T, et al. Study of α-transfer reaction 28Si( 7Li,t) 32S. J Phys G: Nucl Part Phys. 1999;25:1897.
  • Lewitowicz M, et al. Elastic scattering of a secondary 11Li beam on 28Si at 29 MeV/nucleon. Nucl Phys A. 1993;562:301.
  • Nadasen A, et al. Unique potentials for the elastic scattering of 350 MeV 7Li from 12C and 28Si. Phys Rev C. 1995;52:1894.
  • Zerva K, et al. Probing the potential and reaction coupling effects of 6,7Li + 28Si at sub- and near-barrier energies with elastic backscattering. Phys Rev C. 2010;82:044607.
  • El-Azab Farid M, Hassanain MA. Density-independent folding analysis of the Li elastic scattering at intermediate energies. Nucl Phys A. 2000;678:39.
  • El-Azab Farid M, Hassanain MA. Folding model and coupled-channels analysis of 6,7 Li elastic and inelastic scattering. Eur Phys J A. 2004;19:231.
  • Pakou A. Polarization potential for elastic scattering of 6 ,7 Li + 28Si at near-barrier energies. Phys Rev C. 2008;78:067601.
  • El-Azab Farid M, et al. Alpha-deuteron (triton) analysis of 6(7)Li elastic scattering. J Phys G: Nucl Part Phys. 2013;40:075108.
  • Pinilla EC, Descouvemont P. Microscopic description of 7Li in 7Li + 12C and 7Li + 28Si elastic scattering at high energies. Phys Rev C. 2014;89:054615.
  • Kuterbekov KA, et al. Energy dependence of optical-model parameters for the interaction of 6Li and 7Li Ions with 28Si nuclei at low energies. Phys Atomic Nuclei. 2014;77:581.
  • Furumoto T, Suhara T, Itagaki N. Effect of channel coupling on the elastic scattering of lithium isotopes. Phys Rev C. 2018;97:044602.
  • Chen W-D, et al. Microscopic study of 7Li-nucleus potential *. Chinese Phys C. 2020;44:054109.
  • Hamada S, Ibraheem AA. Peculiarities of 6Li+12C elastic scattering. Int J Mod Phys E. 2019;28:1950108.
  • Hamada S, et al. Analysis of 6Li+16O elastic scattering using different potentials. Rev Mex Fis. 2020;66:322.
  • Hamada S, Ibraheem AA. Cluster folding optical potential analysis for 6Li+28Si elastic scattering. Rev Mex Fis. 2021;67(2):276.
  • Hamada S, Alsaif NAM, Ibraheem AA. Detailed analysis for 6Li+40 Ca elastic scattering using different potentials. Phys Scr. 2021;96:055306.
  • Ibraheem AA, et al. Elastic and Inelastic Scattering of 9,10,11Be by 64Zn and 120Sn Nuclei at Different Energies. Braz J Phys. 2021;51:753.
  • Ibraheem AA, Alsaif NAM, Al-Ahmari M, et al. Further investigation of 10,11B +58 Ni elastic scattering. Phys Scr. 2021;96:115307.
  • Hamada S, Ibraheem AA. Comparative Analysis for 6Li + 58Ni System Within the Framework of Various Nuclear Potentials. Braz J Phys. 2022;52:29.
  • Hamada S, Ibraheem AA. Anomaly in weakly bound 7Li nucleus in the field of 208Pb target. Int J Mod Phys E. 2022: 2250019.
  • Vineyard MF, Cook J, Kemper KW,  and M. N. Stephens. Optical potentials for the elastic scattering of 6Li + 12C , 6Li + 16O , and 7Li + 12C. Phys Rev C. 1984;30:916.
  • Vineyard MF, Cook J, Kemper KW. Large-angle 6Li + 28Si elastic and inelastic scattering at 27 and 34 MeV. Nucl Phys A. 1983;405:429.
  • Gontchar II, Chushnyakova MV. A C-code for the double folding interaction potential of two spherical nuclei. Comput Phys Commun. 2010;181:168.
  • Dao T. Khoa G. R. Satchler, W. von Oertzen. Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials. Phys Rev C. 1997;56:954.
  • Allen LJ, McTavish JP, Kermode MW, et al. The root-mean-square radius of the deuteron. J Phys G. 1981;7:1367.
  • Satchler GR, Love WG. Folding model potentials from realistic interactions for heavy-ion scattering. Phys Rep. 1979;55:183.
  • Chamon LC, et al. Nonlocal Description of the Nucleus-Nucleus Interaction. Phys Rev Lett. 1997;79:5218.
  • Chamon LC, Pereira D, Hussein MS. Parameterfree account of quasielastic scattering of stable and radioactive nuclei. Phys Rev C. 1998;58:576.
  • Chamon LC. The São Paulo Potential. Nucl Phys A. 2007;787:198.
  • Carlson BV, Hirata D. Dirac-Hartree-Bogoliubov approximation for finite nuclei. Phys Rev C. 2000;62:054310.
  • Schwandt P, et al. Elastic scattering of polarized tritons from A = 26 − 28 nuclei at 17 MeV. Phys Rev C. 1982;26:369.
  • Lega J, Macq PC. Angular momentum dependence in 22 MeV α-particle elastic scattering by light nuclei. Nucl Phys A. 1974;218:429.
  • Cook J. Global optical-model potentials for the elastic scattering of 6, 7Li projectiles. Nucl Phys A. 1982;388:153.
  • Thompson IJ. Coupled reaction channels calculations in nuclear physics. Comput Phys Rep. 1988;7:167.
  • Hussein MS, Gomes PRS, Lubian J, et al. New manifestation of the dispersion relation: Breakup threshold anomaly. Phys Rev C. 2006;73:044610.