1,942
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis, characterization and sorption efficiency of MnO2 nanoparticles and MnO2@waste eggshell nanocomposite

, , , , &
Pages 1075-1095 | Received 04 Aug 2022, Accepted 19 Oct 2022, Published online: 08 Nov 2022

References

  • Mahmoodi MN, Saffar-Dastgerdi HM. Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Appl Catal, B. 2020;268:118443.
  • Oveisi M, Asli AM, Mahmoodi MN. Carbon nanotube based metal-organic framework nanocomposites: synthesis and their photocatalytic activity for decolorization of colored wastewater. Inorg Chim Acta. 2019;487:169–176.
  • Mahmoodi MN, Taghizadeh A, Taghizadeh M, et al. Surface modified montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution. J Environ Chem Eng. 2019;7(4):103243.
  • Parshetti KG, Parshetti GS, Telke AA, et al. Biodegradation of crystal violet by agrobacterium radio bacter. J Environ Sci. 2011;23(8):1384–1393.
  • Lairini S, Mahtal EK, Miyah Y, et al. The adsorption of crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies. J Mater Environ Sci. 2017;8(9):3252–3261.
  • Rashad S, Zaki HA, Farghali AA. Morphological effect of titanate nanostructures on the photocatalytic degradation of crystal violet. Nanomater Nanotechnol. 2019;9:1–10.
  • Bertolini RCT, Izidoro CJ, Magdalena PC, et al. Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. The Electron J Chem. 2013;5(3):179–191.
  • Farhan MA, Jasim AR, Sando SM. Photo degradation of crystal violet dye by synthesized silver nanoparticles using extract of tangerine peel. Int J Sci Res. 2017;6(10):1–9.
  • Vijay M, Anu Y, Supriya K. Photochemical decolorization of methyl violet dye using Azadirachta indica (Neem) mediated synthesized silver nanoparticles. Der Pharmacial Lettre. 2018;8(7):119–128.
  • Puri C, Sumana G. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl Clay Sci. 2018;166:102–112.
  • Wathukarage A, Herath I, Iqbal MCM, et al. Mechanistic understanding of crystal violet dye sorption by woody biochar; implications for wastewater treatment. Environ Geochem Health. 2017;41:1647–1661.
  • Pandey S, Son N, Kang M. Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int J Biol Macromol. 2022;210:300–314.
  • Khapre M, Shekhawat A, Saravanan D, et al. Mesoporous Fe–Al-doped cellulose for the efficient removal of reactive dyes. Mater Adv. 2022;3:3278–3285.
  • Najafpour MM, Rahimi F, Amini M, et al. A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans. 2012;41:11026–11031.
  • Djerdj I, Arcon D, Jaglicic Z, et al. Non aqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J Phys Chem. 2007;111(9):3614–3623.
  • Islam AM, Morton WD, Johnson BB, et al. Manganese oxides and their application to metal ion and contaminant removal from waste water. J Water Process Eng. 2018;26:264–280.
  • Camacho ML, Parra RR, Deng S. Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater. 2011;189:286–293.
  • Balaz M. Ball milling of eggshell waste as a green and sustainable approach. Adv Colloid Interface Sci. 2018;256:256–275.
  • Yadav T, Mungray AA, Mungray KA. Generation of TiO2 nanoparticle-based acacia saturated eggshell biocomposite for pathogen removal. Environ Nanotechnol, Monit Manage. 2018;9:50–57.
  • Jiang J, Biswas PA. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticles Res. 2009;11:77–89.
  • Altemimi A, Lakhssassi N, Baharlouei A, et al. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extract. Plants. 2017;6:42–65.
  • Ahmad M, Naz BS, Sharif A, et al. Biological and pharmacological properties of the sweet basil (Ocimum basilicum). Br J Pharm Res. 2015;7(5):330–339.
  • Vlase L, Benedec D, Hanganu D, et al. Comparative evaluation and antimicrobial activity of Ocimum basilicum. J Global Pharma Technol. 2010;2(5):49–53.
  • Daniel NV, Daniang EI, Nimyel DN. Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in JOS metropolis, plateau state, Nigeria. Int J Eng Technol. 2011;06:161–165.
  • Güez MC, d.Souza OR, Fischer P, et al. Evaluation of basil extract (Ocimum basilicum L.) on oxidative, antigenotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Brazil J Pharm Sci. 2017;53(1):15098–15110.
  • Singh J, Mehta A, Rawat M, et al. Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-nitrophenol reduction. J Environ Chem Eng. 2018;6:1468–1474.
  • Prasad SA. Green synthesis of nanocrystalline manganese (II, III) oxide. Mater Sci Semicond Process. 2017;71:342–347.
  • Zadeh NM, Sajadi MS, Fard HA. Chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl Catal, B. 2016;191:209–227.
  • Jayapriya E, Lalitha P. Synthesis of silver nanoparticles using leaf aqueous extract of Ocimum basilicum (L.). Int J ChemTech Res. 2013;5(6):2985–2992.
  • Ajitha B, Reddy KAY, Shameer S, et al. Lantana camara leaf extract mediated silver nanoparticles: antibacterial, green catalyst. J Photochem Photobiol. 2015;149:84–92.
  • Kumar V, Yadav S, Yadav KS. Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol. 2010;85:1301–1309.
  • Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol Appl Sci. 2014;3(9):374–383.
  • Manzoor U, Zahra TF, Rafique S, et al. Effect of synthesis temperature, nucleation time, and post synthesis heat treatment of ZnO nanoparticles and its sensing properties. J Nanomater. 2010;2010:189058. doi:10.1155/2015/189058.
  • Pandian KMA, Karthikeyan C, Rajasimman M. Isotherm and kinetic studies on nano-sorption of malachite green onto Allium sativum mediated synthesis of silver nano particles. Biocatal Agr Biotechnol. 2016;8:171–181.
  • Jeevanandam J, Chan SY, Danquah KM. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. ChemBioEng Reviews. 2016;3(2):55–67.
  • Mosaddegh E, Hosseininasab AF, Hassankhani A. Eggshell/Fe3O4 nano composite: a novel magnetic nanoparticles coated on porous ceramic eggshell waste as an efficient catalyst in the synthesis of 1,8-dioxo-octahydroxanthene. J R Soc Chem. 2015;5:106561–106567.
  • Lee J, Scagel FC. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009;115(2):650–656.
  • Bonnia NN, Kamaruddin SM, Nawawi HM, et al. Green biosynthesis of silver nanoparticles using ‘polygonum hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chem. 2016;19:594–602.
  • Dessie Y, Tadesse S, Eswaramoorthya R. Physicochemical parameter influences and their optimization on the biosynthesis of MnO2 nanoparticles using Vernonia amygdalina leaf extract. Arabian J Chem. 2020;13(8):6472–6492.
  • Rasaee I, Ghannadnia M, Honari H. Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum. Nano Med J. 2016;3(4):240–247.
  • Ahmed HA, Hussein K, Alsy HA. Chemotaxonomy and spectral analysis (GC/MS and FT-IR) of essential oil composition of two Ocimum basilicum L. varieties and their morphological characterization. Jordan J Chem. 2017;12(3):147–160.
  • Kadhim JM, Sosa AA, Hameed HI. Evaluation of anti-bacterial activity and bioactive chemical analysis of Ocimum basilicum using Fourier transform infrared (FT- IR) and gas chromatography-mass spectrometry (GC-MS) techniques. Academic J. 2016;8(6):127–146.
  • Anitha P, Sakthivel P. Microwave assisted synthesis and characterization of silver nanoparticles using Ocimum basilicum and its anti-inflammatory activity against human blood cells. Int J Sci Res. 2016;5(1):1422–1428.
  • Gupta N, Kushwaha KA, Chattopadhyaya CM. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian J Chem. 2016;9:S707–S716.
  • Tang N, Tian X, Yang C, et al. Facile synthesis of a-MnO2 nanorods for high-performance alkaline batteries. J Phys Chem Solids. 2010;71:258–262.
  • Botero SL, Herrera PA, Hinestroza PJ. Oriented growth of α-MnO2 nanorods using natural extracts from grape stems and apple peels. Nanomaterials. 2017;7(5):117–123.
  • Sivaranjani K, Meenakshisundaram M. Biological synthesis of silver nanoparticles using Ocimum basillicum leaf extract and their antimicrobial activity. Int Res J Pharm. 2013;4(1):225–229.
  • Naemchan K, Meejoo S, Onreabroy W, et al. Temperature effect on chicken egg shell investigated by XRD, TGA and FTIR. Adv Mat Res. 2008;55:333–336.
  • Tsai TW, Yang MJ, Lai WC, et al. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol. 2006;97:488–493.
  • Mosaddegh E, Hassankhani A, Maleh KH. Synthesis and characterization of ES/Cu(OH)2 nanocomposite: a novel and high effective catalyst in the green synthesis of pyrano[4,3-b]pyrans. Mater Sci Eng. 2015;46:264–269.
  • Hoseinpour V, Souri M, Ghaemi N. Green synthesis, characterization and photocatalytic activity of manganese dioxide nanoparticles. Micro Nano Lett. 2018;13:1560–1563.
  • Mishra K, Poudel NT, Basavegowda N, et al. Enhanced catalytic performance of magnetic Fe3O4–MnO2 nanocomposites for the decolorization of rhodamine B, reduction of 4-nitroaniline, and sp3 C–H functionalization of 2- methylpyridines to isatins. J Catal. 2016;344:273–285.
  • Pung YS, Chan LY, Sreekantan S, et al. Photocatalytic activity of ZnO-MnO2 core shell nanocomposite in degradation of RhB dye. Pigm Resin Technol. 2016;45:408–418.
  • Karimi M, Eshraghi JM. One pot and green synthesis of Mn3O4 nanoparticles using an all-inone system (solvent, reactant and template) based on ethaline deep eutectic solvent. J Alloys Compd. 2017;696:171–176.
  • Feng L, Xuan Z, Zhao H, et al. Mno2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett. 2014;9:290. doi:10.1186/1556-276X-9-290.
  • Paul PJJ, Sakunthala M, Udhaya IC. Green synthesis of manganese nanoparticles using the aqueous extract of Ctenolepis garcini (Burm. f.) C.B Clarke. Inte J Bot Stud. 2017;5:71–75.
  • Asaikkutti A, Bhavana SP, Vimala K, et al. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol. 2016;5:7–17.
  • Moon AS, Salunke KB, Alkotaini B, et al. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 2015;9:220–225.
  • Dang DT, Cheney AM, Qian S, et al. Novel rapid one step synthesis of manganese oxide nanoparticles at room temperature using poly(dimethylsiloxane). Am Chem Soc. 2013;52(7):2750–2753.
  • Sharma G, Kumar A, Naushad M, et al. Fabrication and characterization of Gum arabic-cl- poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr Polym. 2018;202:444–453.
  • Kulkarni RM, Revanth T, Acharya A, et al. Removal of crystal violet dye from aqueous solution using water hyacinth; equilibrium, kinetics and thermodynamics study. Resource-Efficient Technol. 2017;3:71–77.
  • Suhail ASF, Mashkour SM, Saeb D. The study on photo degradation of crystal violet by polarographic technique. Int J Basic Appl Sci. 2015;15(3):12–211.
  • Mashkoor F, Nasar A. Polyaniline/Tectona grandis sawdust: a novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye. Groundwater Sustainable Dev. 2019;8:390–401.
  • Alshabanat MB, Alsenani G, Almufarij R. Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. J Chem. 2013;2013:210239. doi:10.1155/2013/210239.
  • Mahmoud EM, Nabil MG, Khalifa AM. Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposites. J Environ Chem Eng. 2019;7(2):103009. doi:10.1016/j.jece.2019.103009.
  • Bian Y, Sun H, Luo Y, et al. Effect of inorganic salt ions on the adsorption of quinoline using coal powder. Water Sci Technol. 2018;78(3):496–505.
  • Tanthapanichakoon W, Ariyadejwanich P, Japthong P, et al. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 2005;39(7):1347–1353.
  • Rawat S, Singh J. Green synthesis of iron nanoparticles using Plumeria and Jatropha: characterization and investigation of their adsorption, regeneration and catalytic degradation efficiencies. BioNanoScience. 2021;11:1142–1153.
  • Samrot VA, Ali HH, Selvarani J, et al. Adsorption efficiency of chemically synthesized superparamagnetic iron oxide nanoparticles (SPIONs) on crystal violet dye. Curr Res Green Sustainable Chem. 2021;4:100066.
  • Foroutan R, Peighambardoust SJ, Peighambardoust SH, et al. Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study. Molecules. 2021;26:2241.
  • Ali I, Peng C, Khan ZM, et al. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arab J Sci Eng. 2018;43:6245–6259.
  • Basavaiah K, Kahsay MH, Rama Devi D. Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L. for an efficient adsorption of crystal violet. Emergent Mater. 2018;1:121–132.
  • Alizadeh N, Shariati S, Besharati N. Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int J Environ Res. 2017;11:197–206.
  • Abdolahi G, Dargahi M, Ghasemzadeh H. Synthesis of starch-g-poly (acrylic acid)/ZnSe quantum dot nanocomposite hydrogel, for effective dye adsorption and photocatalytic degradation: thermodynamic and kinetic studies. Cellulose. 2020;27:6467–6483.
  • Hoang BN, Nguyen TT, Bui QPT, et al. Enhanced selective adsorption of cation organic dyes on polyvinyl alcohol/agar/maltodextrin water-resistance biomembrane. J Appl Polym Sci. 2020;137:48904.
  • Druzian SP, Zanatta NP, Côrtes LN, et al. Preparation of chitin nanowhiskers and its application for crystal violet dye removal from wastewaters. Environ Sci Pollut Res. 2019;26:28548–28557.
  • AL-Shehri SH, Almudaifer E, Alorabi QA, et al. Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: equilibrium, mechanism studies and modeling analysis. Environ Polutants Bioavailability. 2021;33(1):214–226.