952
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mathematical modelling of growth of tumour cells with chemotherapeutic cells by using Yang–Abdel–Cattani fractional derivative operator

ORCID Icon &
Pages 1133-1141 | Received 16 Sep 2022, Accepted 05 Nov 2022, Published online: 21 Nov 2022

References

  • Adam JA. The dynamics of growth-factor-modifiedimmune response to cancer growth: one dimensional models. Math Comput Model. 1993 Feb 1;17(3):83–106.
  • Ansarizadeh F, Singh M, Richards D. Modelling of tumor cells regression in response to chemotherapeutic treatment. Appl Math Model. 2017 Aug 1;48:96–112.
  • de Pillis LG, Gu W, Radunskaya AE. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol. 2006 Feb 21;238(4):841–862.
  • Fahmy S, El-Geziry AM, Mohamed E, et al. Fractional-order mathematical model for chronic myeloid leukae-mia. In: 2017 European Conference on Circuit Theory and Design (ECCTD); 2017. p. 1–4.
  • Friedman A. A hierarchy of cancer models and their mathematical challenges. Discrete Contin Dyn Syst-B. 2004;4(1):147.
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: Cancer J Clin. 2011 Mar;61(2):69–90.
  • Joshi B, Wang X, Banerjee S, et al. On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J Theor Biol. 2009 Aug 21;259(4):820–827.
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Elsevier; 2006.
  • Basirzadeh H, Nazari S. T-lymphocyte cell injection cancer immunotherapy: an optimal control approach. Iran J Oper Res. 2012;3(1):46–60.
  • Biemar F, Foti M. Global progress against cancer – challenges and opportunities. Cancer Biol Med. 2013 Dec;10(4):183.
  • Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012 Aug 1;13(8):790–801.
  • Castiglione F, Piccoli B. Cancer immunotherapy, mathematical modeling and optimal control. J Theor Biol. 2007 Aug 21;247(4):723–732.
  • De Pillis LG, Radunskaya A. A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Comput Math Methods Med. 2001 Jan 1;3(2):79–100.
  • De Pillis LG, Radunskaya A. The dynamics of an optimally controlled tumor model: a case study. Math Comput Model. 2003 Jun 1;37(11):1221–1244.
  • De Pillis LG, Radunskaya AE, Wiseman CL. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 2005 Sep 1;65(17):7950–7958.
  • He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng. 1999 Aug 1;178(3–4):257–262.
  • Itik M, Salamci MU, Banks SP. SDRE optimal control of drug administration in cancer treatment. Turk J Electr Eng Comput Sci. 2010;18(5):715–730.
  • Ku-Carrillo RA, Delgadillo SE, Chen-Charpentier BM. A mathematical model for the effect of obesity on cancer growth and on the immune system response. Appl Math Model. 2016 Apr 1;40(7–8):4908–4920.
  • Morgan AP. A homotopy for solving polynomial systems. Appl Math Comput. 1986 Jan 1;18(1):87–92.
  • Murray JM. Optimal control for a cancer chemotheraphy problem with general growth and loss functions. Math Biosci. 1990 Mar 1;98(2):273–287.
  • Shi L, Tayebi S, Arqub OA, et al. The novel cubic B-spline method for fractional Painlevé and Bagley-Trovik equations in the Caputo, Caputo-Fabrizioand conformable fractional sense. Alex Eng J. 2022 Oct 1.
  • Arqub OA, Osman MS, Abdel-Aty AH, et al. A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics. 2020 Jun 5;8(6):923.
  • Ali KK, Abd El Salam MA, Mohamed EM, et al. Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Adv Differ Equ. 2020 Dec;2020(1):1–23.
  • Djennadi S, Shawagfeh N, Osman MS, et al. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys Scr. 2021 Jun 15;96(9):Article ID 094006.
  • Nanda S, Moore H, Lenhart S. Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math Biosci. 2007 Nov 1;210(1):143–156.
  • Rihan FA, Rahman DA, Lakshmanan S, et al. A time delay model of tumour-immune system interactions: global dynamics, parameter estimation, sensitivity analysis. Appl Math Comput. 2014 Apr 1;232:606–623.
  • Swan GW. Role of optimal control theory in cancer chemotherapy. Math Biosci. 1990 Oct 1;101(2):237–284.
  • Chaplain MA, Lolas G. Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci. 2005 Nov;15(11):1685–1734.
  • Phadtare A, Rathod C, Thonte S, et al. Problems in cancer therapy: a review. Indo Am J Pharm Res. 2013;3(3):2778–2794.
  • Kuznetsov VA. Dynamics of immune processes during tumor growth; 1992.
  • Kumar S, Atangana A. A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment. Int J Biomath. 2020 Apr 17;13(3):Article ID 2050021.
  • Ganji RM, Jafari H, Moshokoa SP, et al. A mathematical model and numerical solution for brain tumor derived using fractional operator. Results Phys. 2021 Sep 1;28:Article ID 104671.
  • Tuan NH, Ganji RM, Jafari H. A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel. Chinese J Phys. 2020 Dec 1;68:308–320.
  • Karthikeyan K, Karthikeyan P, Baskonus HM, et al. Almost sectorial operators on ψ-Hilfer derivative fractional impulsive integro-differential equations. Math Methods Appl Sci. 2022 Sep 15;45(13):8045–8059.
  • He ZY, Abbes A, Jahanshahi H, et al. Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics. 2022 Jan 6;10(2):165.
  • Jin F, Qian ZS, Chu YM. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput. 2022;12(2):790–806.
  • Iqbal MA, Wang Y, Miah MM, et al. Study on date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 2021 Dec 23;6(1):4.
  • Chu YM, Bashir S, Ramzan M, et al. Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. 2022 Mar 18.
  • Khan MA, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur Phys J Plus. 2021 Feb;136(2):1–20.
  • Dubey RS, Baleanu D, Mishra M, et al. Solution of modified Bergman's minimal blood glucose insulin model using Caputo-Fabrizio fractional derivative. CMES. 2021;128(3):1247–1263.
  • Zhang L, Rahman MU, Ahmad S, et al. Dynamics of fractional order delay model of coronavirus disease. AIMS Math. 2022;7(3):4211–4232.
  • Zhang L, Arfan M, Ali A. Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel. Results Phys. 2021 Sep 1;28:Article ID 104559.
  • Liu X, Arfan M, Ur Rahman M, et al. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator. Comput Methods Biomech Biomed Engin. 2022 Mar;3:1–5.
  • Xu C, Baleanu D. On fractional-order symmetric oscillator with offset-boosting control. Nonlinear Anal: Model Control. 2022 Jul 19;27(5):994–1008.
  • Liu X, Ahmad S, Baleanu D, et al. A new fractional infectious disease model under the non-singular Mittag-Leffler derivative. Waves Random Complex Media. 2022 Feb;22:1–27.
  • Rafique J, Afzal QQ, Perveen M, et al. Drug delivery of carvedilol (cardiovascular drug) using phosphorene as a drug carrier: a DFT study. J Taibah Univ Sci. 2022 Dec 31;16(1):31–46.
  • Alarabi TH, Elgazery NS, Elelamy AF. Mathematical model of oxytactic bacteria's role on MHD nanofluid flow across a circular cylinder: application of drug-carrier in hypoxic tumour. J Taibah Univ Sci. 2022 Dec 31;16(1):703–724.
  • Alshehri MH, Duraihem FZ, Alalyani A, et al. A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data. J Taibah Univ Sci. 2021 Jan 1;15(1):26–36.
  • Shrahili M, Dubey RS, Shafay A. Inclusion of fading memory to Banister model of changes in physical condition. Discrete Contin Dyn Syst-S. 2020;13(3):881.
  • Malyk IV, Gorbatenko M, Chaudhary A, et al. Numerical solution of nonlinear fractional diffusion equation in framework of the Yang-Abdel-Cattani derivative operator. Fractal Fract. 2021 Jul 2;5(3):64.
  • Gill V, Dubey RS. New analytical method for Klein-Gordon equations arising in quantum field theory. European J Adv Eng Technol. 2018;5(8):649–655.
  • Dubey RS, Goswami P. Mathematical model of diabetes and its complication involving fractional operator without singular kernal. Discrete Contin Dyn Syst-S. 2021;14(7):2151.
  • Jleli M, Kumar S, Kumar R, et al. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method. Alex Eng J. 2020 Oct 1;59(5):2859–2863.
  • Prabhakar TR. A singular integral equation with a generalized Mittag Leffler function in the kernel; 1971.
  • Dubey RS, Mishra MN, Goswami P. Effect of covid-19 in India – a prediction through mathematical modeling using Atangana Baleanu fractional derivative. J Interdiscip Math. 2022 May;11:1–4.
  • Yang XJ, Abdel-Aty M, Cattani C. A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm Sci. 2019;23(3 Part A):1677–1681.
  • Yang XJ, Baleanu D, Srivastava HM. Local fractional integral transforms and their applications. Academic Press; 2015.