1,185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phenotypic and molecular detection of biofilm formation in clinical methicillin-resistant Staphylococcus aureus isolates from Malaysia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1142-1150 | Received 04 Mar 2022, Accepted 09 Nov 2022, Published online: 21 Nov 2022

References

  • Mukherji R, Patil A, Prabhune A. Role of extracellular proteases in biofilm disruption of gram-positive bacteria with special emphasis on staphylococcus aureus biofilms. Enzym Eng. 2015;4(1):1000126. doi:10.4172/2329-6674.1000126.
  • Podbielska A, Galkowska H, Stelmach E, et al. Slime production by Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients with diabetic foot ulcers. Arch Immunol Ther Exp (Warsz). 2010;58(4):321–324. doi:10.1007/s00005-010-0079-9.
  • Otto M. MRSA virulence and spread. Cell Microbiol. 2012;14(10):1513–1521. doi:10.1111/j.1462-5822.2012.01832.x.
  • Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62. doi:10.1038/nrmicro3161.
  • Achek R, Hotzel H, Nabi I, et al. Phenotypic and molecular detection of biofilm formation in Staphylococcus aureus isolated from different sources in Algeria. Pathogens. 2020;9(2):153. doi:10.3390/pathogens9020153.
  • Azmi K, Qrei W, Abdeen Z. Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genomics. 2019;20(1):578. doi:10.1186/s12864-019-5929-1.
  • Hamzah AM C, Yeo CC, Puah SM, et al. Staphylococcus aureus infections in Malaysia: A review of antimicrobial resistance and characteristics of the clinical isolates, 1990-2017. Antibiotics. 2019;8(3):128. doi:10.3390/antibiotics8030128.
  • Jones SU, Chua KH, Chew CH, et al. spa diversity of methicillin-resistant and -susceptible staphylococcus aureus in clinical strains from Malaysia: a high prevalence of invasive European spa-type t032. PeerJ. 2021;9:e11195. doi:10.7717/peerj.11195.
  • Osman KM, Amer AM, Badr JM, et al. Antimicrobial resistance, biofilm formation and mecA characterization of methicillin-susceptible S. aureus and non-S. aureus of beef meat origin in Egypt. Front Microbiol. 2016;7:222. doi:10.3389/fmicb.2016.00222.
  • Kaiser TD, Pereira EM, Dos Santos KR, et al. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis. 2013;75(3):235–239. doi:10.1016/j.diagmicrobio.2012.11.014.
  • Puah SM, Tan JAMA, Chew CH, et al. Diverse profiles of biofilm and adhesion genes in Staphylococcus aureus food strains isolated from sushi and sashimi. J Food Sci. 2018;83(9):2337–2342. doi:10.1111/1750-3841.14300.
  • Kwasny SM, Opperman TJ. Static biofilm cultures of gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol. 2010;Chapter 13:13A.1–13A.8. doi:10.1002/0471141755.ph13a08s50.
  • Naves P, del Prado G, Huelves L, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol. 2008;105(2):585–590. doi:10.1111/j.1365-2672.2008.03791.x.
  • Tristan A, Ying L, Bes M, et al. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol. 2003;41(9):4465–4467. doi:10.1128/JCM.41.9.4465-4467.2003.
  • Sharma V, Sharma S, Dahiya DK, et al. Coagulase gene polymorphism, enterotoxigenecity, biofilm production, and antibiotic resistance in Staphylococcus aureus isolated from bovine raw milk in north west India. Ann Clin Microbiol Antimicrob. 2017;16(1):65. doi:10.1186/s12941-017-0242-9.
  • Lina G, Boutite F, Tristan A, et al. Bacterial competition for human nasal cavity colonization: role of Staphylococcal agr alleles. Appl Environ Microbiol. 2003;69(1):18–23. doi:10.1128/AEM.69.1.18-23.2003.
  • McDonald, J.H. Handbook of biological statistics. 3rd ed. MD: Sparky House Publishing, Baltimore, Maryland; 2014.
  • Bissong MEA, Ateba CN. Genotypic and phenotypic evaluation of biofilm production and antimicrobial resistance in Staphylococcus aureus isolated from milk, north west province. South Africa. Antibiotics (Basel). 2020;9(4):156. doi:10.3390/antibiotics9040156.
  • Oliveira M, Nunes SF, Carneiro C, et al. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol. 2007;124(1-2):187–191. doi:10.1016/j.vetmic.2007.04.016.
  • Jain A, Agarwal A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods. 2009;76(1):88–92. doi:10.1016/j.mimet.2008.09.017.
  • Lade H, Park JH, Chung SH, et al. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J Clin Med. 2019;8(11):1853. doi:10.3390/jcm8111853.
  • Manandhar S, Singh A, Varma A, et al. Biofilm producing clinical Staphylococcus aureus isolates augmented prevalence of antibiotic resistant cases in tertiary care hospitals of Nepal. Front Microbiol. 2018;9:2749. doi:10.3389/fmicb.2018.02749.
  • Sanchez Jr CJ, Mende K, Beckius ML, et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013;13:47. doi:10.1186/1471-2334-13-47.
  • Yu S, Jiang B, Jia C, et al. Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2020;19(1):10. doi:10.1186/s12941-020-00352-4.
  • Coraça-Huber DC, Kreidl L, Steixner S, et al. Identification and morphological characterization of biofilms formed by strains causing infection in orthopedic implants. Pathogens. 2020;9(8):649. doi:10.3390/pathogens9080649.
  • Niek WK, Teh CSJ, Idris N, et al. Investigation of biofilm formation in methicillin-resistant Staphylococcus aureus associated with bacteraemia in a tertiary hospital. Folia Microbiol (Praha). 2021;66(5):741–749. doi:10.1007/s12223-021-00877-x.
  • Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J. 2020;18:3324–3334. doi:10.1016/j.csbj.2020.10.027.
  • Ghaioumy R, Tabatabaeifar F, Mozafarinia K, et al. Biofilm formation and molecular analysis of intercellular adhesion gene cluster (icaABCD) among Staphylococcus aureus strains isolated from children with adenoiditis. Iran J Microbiol. 2021;13(4):458–463. doi:10.18502/ijm.v13i4.6969.
  • Arciola CR, Campoccia D, Ravaioli S, et al. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7. doi:10.3389/fcimb.2015.00007.
  • Chen Q, Xie S, Lou X, et al. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen. 2020;9(1):e00946. doi:10.1002/mbo3.946.
  • Peacock SJ, Moore CE, Justice A, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002;70(9):4987–4996. doi:10.1128/iai.70.9.4987-4996.2002.
  • Soltani E, Farrokhi E, Zamanzad B, et al. Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (FnbA and FnbB) among Staphylococcus aureus isolates from Shahrekord hospitals. BMC Res Notes. 2019;12(1):49. doi:10.1186/s13104-019-4055-0.
  • Latasa C, Solano C, Penadés JR, et al. Biofilm-associated proteins. C R Biol. 2006;329(11):849–857. doi:10.1016/j.crvi.2006.07.008.
  • Parastan R, Kargar M, Solhjoo K, et al. A synergistic association between adhesion-related genes and multidrug resistance patterns of Staphylococcus aureus isolates from different patients and healthy individuals. J Glob Antimicrob Resist. 2020;22:379–385. doi:10.1016/j.jgar.2020.02.025.
  • Ganesh VK, Rivera JJ, Smeds E, et al. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog. 2008;4(11):e1000226. doi:10.1371/journal.ppat.1000226.
  • Flick MJ, Du X, Prasad JM, et al. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood. 2013;121(10):1783–1794. doi:10.1182/blood-2012-09-453894.
  • Mulcahy ME, Geoghegan JA, Monk IR, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8(12):e1003092. doi:10.1371/journal.ppat.1003092.
  • Downer R, Roche F, Park PW, et al. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem. 2002;277(1):243–250. doi:10.1074/jbc.M107621200.
  • Traber KE, Lee E, Benson S, et al. Agr function in clinical Staphylococcus aureus isolates. Microbiology (Reading). 2008;154(Pt 8):2265–2274. doi:10.1099/mic.0.2007/011874-0.
  • Shopsin B, Drlica-Wagner A, Mathema B, et al. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J Infect Dis. 2008;198(8):1171–1174. doi:10.1086/592051.
  • Soong G, Paulino F, Wachtel S, et al. Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes. mBio. 2015;6(2):e00289–15. doi:10.1128/mBio.00289-15.
  • Vali L, Dashti AA, Mathew F, et al. Characterization of heterogeneous MRSA and MSSA with reduced susceptibility to chlorhexidine in Kuwaiti hospitals. Front Microbiol. 2017;8:1359. doi:10.3389/fmicb.2017.01359.
  • Jarraud S, Mougel C, Thioulouse J, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70(2):631–641. doi:10.1128/IAI.70.2.631-641.2002.
  • Ghasemzadeh-Moghaddam H, Ghaznavi-Rad E, Sekawi Z, et al. Methicillin-susceptible Staphylococcus aureus from clinical and community sources are genetically diverse. Int J Med Microbiol. 2011;301(4):347–353. doi:10.1016/j.ijmm.2010.10.004.