483
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of various enzymatic saccharifications and microwave pretreatment durations on sugar yield and its property alterations of Chinese spirits distillers residues

ORCID Icon, , , , , , , , , , & show all
Pages 1202-1212 | Received 25 Jul 2022, Accepted 29 Nov 2022, Published online: 07 Dec 2022

References

  • Morais A-R-C, Pinto J-V, Nunes D, et al. Imidazole: prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustain Chem Eng. 2016;4(3):1643–1652. doi:10.1021/acssuschemeng.5b01600.
  • Bernardo JR, Gírio FM, Łukasik RM. The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis. Molecules. 2019;24(4):808. doi:10.3390/molecules24040808.
  • Jiang LQ, Wu YX, Wu NN, et al. Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis. Fuel. 2020;265:116965. doi:10.1016/j.fuel.2019;116965.
  • Silveira MHL, Morais ARC, da Costa Lopes AM, et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chem Sus Chem. 2015;8(20):3366–3390. doi:10.1002/cssc.201500282.
  • He F, Yang H, Zeng L, et al. Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioproc Biosyst Eng. 2020;43(5):927–936. doi:10.1007/s00449-020-02289-6.
  • Liu H, Yue X, Jin Y, et al. Preparation of hydrolytic liquid from dried distillers grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7–13. J Environ Manage. 2017;201:172–176. doi:10.1016/j.jenvman.2017.05.054.
  • Zhi Y, Wu Q, Xu Y. Production of surfactin from waste distillersgrains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresour technol. 2017;235:96–103. doi:10.1016/j.biortech.2017.03.090.
  • Ao T, Li R, Chen Y, et al. Anaerobic thermophilic digestion of maotai-flavored distillers grains: process performance and microbial community dynamics. Energ Fuel. 2019;33(9):8804–8811. doi:10.1021/acs.energyfuels.9b02582.
  • Huang RL, Yin YL, Wang KP, et al. Nutritional value of fermented and not fermented material of distillers grains in pig nutrition. J Anim Feed Sci. 2003;12(2):261–270. doi:10.22358/jafs/67702/2003.
  • Ren H, Sun W, Wang Z, et al. Enhancing the enzymatic saccharification of grain stillage by combining microwave-assisted hydrothermal irradiation and fungal pretreatment. ACS Omega. 2020;5(22):12603–12614. doi:10.1021/acsomega.9b03681.
  • Aminutesi N, Haritos V-S, Tanksale A. Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield. Renew Energy. 2018;127:653–660. doi:10.1016/j.renene.2018.05.001.
  • Anita S-H, Solihat N-N, Sari F-P, et al. Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste Biomass Valor. 2020;11(6):2673–2687. doi:10.1007/s12649-018-00566-w.
  • Moodley P, Kana EG. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic saccharification. Bioresour Technol. 2017;235:35–42. doi:10.1016/j.biortech.2017.03.031.
  • Rajeswari G, Arutselvy B, Jacob S. Delignification of aloe vera rind by mild acid associated microwave pretreatment to persuade enhanced enzymatic saccharification. Waste Biomass Valorization. 2020;11(11):5965–5975.doi:10.1007/s12649-019-00830-7.
  • Silva T-P, Ferreira AN, de Albuquerque FS, et al. Box–Behnken experimental design for the optimization of enzymatic saccharification of wheat bran. Biomass Convers Biorefinery. 2021:1–8. doi:10.1007/s13399-021-01378-0.
  • Romero-Borbón E, Oropeza-González AE, González-García Y, et al. Thermochemical and enzymatic saccharification of water hyacinth biomass into fermentable fugars. Processes. 2022;10(2):210. doi:10.3390/pr1002-0210.
  • Alias NH, Abd-Aziz S, Yee Phang L, et al. Enzymatic saccharification with sequential-substrate feeding and sequential-enzymes loading to enhance fermentable sugar production from sago hampas. Processes. 2021;9(3):535. doi:10.3390/pr9030535.
  • Mukasekuru MR, Kaneza P, Sun H, et al. Fed-batch high-solids enzymatic saccharification of lignocellulosic substrates with a combination of additives and accessory enzymes. Ind Crop Prod. 2020;146:112156. doi:10.1016/j.indcrop.2020.112156.
  • Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2.
  • Miller GL. Use of dinitrosalicylic acid reagent for determinutesation of reducing sugar. Anal Chem. 1959;31(3):426–428. doi:10.1021/ac60147a030.
  • Xu L, Liu L, Li S, et al. Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech. 2019;21(2):341–347. doi:10.1007/s12355-018-0650-y.
  • Alam A, Zhang R, Liu P, et al. A finalized determinutesant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnol Biofuels. 2019;12(1):1–22. doi:10.1186/s13068-019-1437-4.
  • Zeng H, Shuai Y, Zeng X, et al. Evaluation of health-related composition and bioactivity of five fruit juices following Lactobacillus plantarum fermentation and simulated digestion. Int J Food Sci Tech. 2021;56(2):648–660. doi:10.1111/ijfs.14713.
  • Wu XQ, Liu PD, Liu Q, et al. Production of cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a solid acid catalyst. RSC Adv. 2021;11(23):14071–14078. doi:10.1039/d1ra02259h.
  • Li F, Xie G, Huang J, et al. Os CESA 9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J. 2017;15(9):1093–1104. doi:10.1111/pbi.12700.
  • Rr A, Cs A, Sj B, et al. Improving enzymatic hydrolysis of brewer spent grain with nonthermal plasma. Bioresour Technol. 2019;282:520–524. doi:10.1016/j.biortech.2019.03.071.
  • Ravindran R, Jaiswal S, Abu-Ghannam N, et al. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers, spent grain. Bioresour Technol. 2018;248:272–279. doi:10.1016/j.biortech.2017.06.039.
  • Niemi P, Faulds CB, Sibakov J, et al. Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in Brewer's spent grain. Bioresour Technol. 2012;116:155–160. doi:10.1016/j.biortech.2012.04.043.
  • Dawid M, Grzegorz K. Microwave-assisted hydrotropic pretreatment as a new and highly efficient way to cellulosic ethanol production from maize distillery stillage. Appl Microbiol Biotechnol. 2021;105(8):3381–3392. doi:10.21203/rs.3.rs-36466/v1.