614
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of new waves in applied sciences via Schrödinger equations

ORCID Icon, , &
Article: 2285082 | Received 31 Jan 2023, Accepted 21 Jul 2023, Published online: 27 Nov 2023

References

  • Abdelwahed HG. Nonlinearity contributions on critical MKP equation. J Taibah Univ Sci. 2020;14(1):777–782. doi: 10.1080/16583655.2020.1774136
  • Abdelwahed HG. Super electron acoustic propagations in critical plasma density. J Taibah Univ Sci. 2020;14(1):1363–1368. doi: 10.1080/16583655.2020.1822653
  • Sharaf MK, El-Shewy EK, Zahran MA. Fractional anisotropic diffusion equation in cylindrical brush model. J Taibah Univ Sci. 2020;14(1):1416–1420. doi: 10.1080/16583655.2020.1824743
  • Inc M, Aliyu AI, Yusuf A, et al. Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration scheme. Mod Phys Lett B. 2019;33(19):1950224. doi: 10.1142/S0217984919502245
  • Abdelrahman MAE, Sohaly MA. On the new wave solutions to the MCH equation. Indian J Phys. 2019;93:903–911. doi: 10.1007/s12648-018-1354-6
  • Bouchaala F, Ali MY, Matsushima J, et al. Estimation of seismic wave attenuation from 3D seismic data: a case study of OBC data acquired in an offshore oilfield. Energies. 2022;15:534. doi: 10.3390/en15020534
  • Bouchaala F, Ali MY, Matsushima J. Compressional and shear wave attenuations from walkway VSP and sonic data in an offshore Abu Dhabi oilfield. C R Géosci. 2021;353:337–354.
  • Matsushima J, Ali MY, Bouchaala F. Propagation of waves with a wide range of frequencies in digital core samples and dynamic strain anomaly detection: carbonate rock as a case study. Geophys J Int. 2021;224(1):340–354. doi: 10.1093/gji/ggaa467
  • Li R, Manafian J, Lafta HA, et al. The nonlinear vibration and dispersive wave systems with cross-kink and solitary wave solutions. Int J Geom Methods Mod Phys. 2022;19(10):2250151. doi: 10.1142/S0219887822501511
  • Raza N, Zubair A. Optical dark and singular solitons of generalized nonlinear Schrödinger's equation with anti-cubic law of nonlinearity. Mod Phys Lett B. 2019;65:1950158. doi: 10.1142/S0217984919501586
  • Raza N, Javid A. Generalization of optical solitons with dual dispersion in the presence of Kerr and quadratic-cubic law nonlinearities. Mod Phys Lett B. 2019;33:1850427. doi: 10.1142/S0217984918504274
  • Chen Z, Manafian J, Raheel M, et al. Extracting the exact solitons of time-fractional three coupled nonlinear Maccari's system with complex form via four different methods. Results Phys. 2022;36:105400. doi: 10.1016/j.rinp.2022.105400
  • Nakkeeran K. Bright and dark optical solitons in fiber media with higher-order effects. Chaos Solitons Fract. 2002;13:673–679. doi: 10.1016/S0960-0779(00)00278-2
  • Triki H, Bensalem C, Biswas A, et al. Self-similar optical solitons with continuous-wave background in a quadratic-cubic non-centrosymmetric waveguide. Opt Commun. 2019;437:392–398. doi: 10.1016/j.optcom.2018.12.074
  • Abdelrahman MAE, Sohaly MA. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur Phys J Plus. 2017;132:339. doi: 10.1140/epjp/i2017-11607-5
  • Hassan SZ, Abdelrahman MAE. A Riccati–Bernoulli sub-ODE method for some nonlinear evolution equations. Int J Nonlinear Sci Numer Simul. 2019;20(3–4):303–313. doi: 10.1515/ijnsns-2018-0045
  • Alharbi YF, Abdelrahman MAE, Sohaly MA, et al. Disturbance solutions for the long-short-wave interaction system using bi-random Riccati–Bernoulli sub-ODE method. J Taibah Univ Sci. 2020;14(1):500–506. doi: 10.1080/16583655.2020.1747242
  • Alharbi YF, Abdelrahman MAE, Sohaly MA, et al. Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution. Eur Phys J Plus. 2020;135:368. doi: 10.1140/epjp/s13360-020-00371-2
  • Wang W, Hasanirokh K, Manafian J, et al. Analytical approach for polar magnetooptics in multilayer spin-polarized light emitting diodes based on InAs quantum dots. Opt Quant Electron. 2022;54:137. doi: 10.1007/s11082-021-03461-2
  • Abdelrahman MAE, Abdo NF. On the nonlinear new wave solutions in unstable dispersive environments. Phys Scr. 2020;95(4):045220. doi: 10.1088/1402-4896/ab62d7
  • Ismael HF, Baskonus HM, Bulut H, et al. Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional. Opt Quant Electron. 2023;55:303. doi: 10.1007/s11082-023-04581-7
  • Baskonus HM, Gao W. Investigation of optical solitons to the nonlinear complex Kundu–Eckhaus and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations in conformable. Opt Quant Electron. 2022;54:388. doi: 10.1007/s11082-022-03774-w
  • Eslami M. Solitary wave solutions for perturbed equation nonlinear Schrödinger's with Kerr law nonlinearity under the DAM. Optik. 2015;126:1312–1317. doi: 10.1016/j.ijleo.2015.02.075
  • Cazenave T, Lions PL. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun Math Phys. 1982;85:549–561. doi: 10.1007/BF01403504
  • Feng B, Zhang H. Stability of standing waves for the fractional Schrödinger–Choquard equation. Comput Math Appl. 2018;75:2499–2507. doi: 10.1016/j.camwa.2017.12.025
  • Feng B, Zhang H. Stability of standing waves for the fractional Schrödinger–Hartree equation. J Math Anal Appl. 2018;460:352–364. doi: 10.1016/j.jmaa.2017.11.060
  • Cazenave T. Semilinear Schrödinger equations. New York; Providence, RI: New York University, Courant Institute of Mathematical Sciences; American Mathematical Society; 2003. (Courant lecture notes in mathematics; vol. 10).
  • Della Volpe C, Siboni S. From van der Waals equation to acid-base theory of surfaces: a chemical-mathematical journey. Rev Adhes Adhes. 2022;10(1):47–97.
  • Aslanova F. A comparative study of the hardness and force analysis methods used in truss optimization with metaheuristic algorithms and under dynamic loading. J Res Sci Eng Technol. 2020;8(1):25–33. doi: 10.24200/jrset.vol8iss1pp25-33
  • Zhang M, Xie X, Manafian J, et al. Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation. J Adv Res. 2022;38:131–142. doi: 10.1016/j.jare.2021.09.015
  • Nishino A, Umeno Y, Wadati M. Chiral nonlinear Schrodinger equation. Chaos Solitons Fract. 1998;9(7):1063–1069. doi: 10.1016/S0960-0779(97)00184-7
  • Biswas A. Perturbation of chiral solitons. Nucl Phys B. 2009;806:457–461. doi: 10.1016/j.nuclphysb.2008.05.023
  • Ebadi G, Yildirim A, Biswas A. Chiral solitons with Bohm potential using (G′G) method and exp-function method. Rom Rep Phys. 2012;64:357–366.
  • Younis M, Cheemaa N, Mahmood SA, et al. On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt Quant Electron. 2016;48:542. doi: 10.1007/s11082-016-0809-2
  • Cheemaa N, Chen S, Seadawy AR. Chiral soliton solutions of perturbed chiral nonlinear Schrödinger equation with its applications in mathematical physics. Int J Mod Phys B. 2020;34(31):2050301. doi: 10.1142/S0217979220503014
  • Torres-Silva H, Zamorano M. Chiral effects on optical solitons. Math Comput Simul. 2003;62:149–161. doi: 10.1016/S0378-4754(02)00177-5
  • Nandy S. Inverse scattering approach to coupled higher-order nonlinear Schrödinger equation and N-soliton solutions. Nucl Phys B. 2004;679:647–659. doi: 10.1016/j.nuclphysb.2003.12.018
  • Biswas A, Mirzazadeh M, Eslami M. Soliton solution of generalized chiral nonlinear Schrödingers equation with time-dependent coefficients. Acta Phys Polon B. 2014;45:849–866. doi: 10.5506/APhysPolB.45.849
  • Ismail MS, Al-Basyouni KS, Aydin A. Conservative finite difference schemes for the chiral nonlinear, Schrödinger equation. Bound Value Probl. 2015;2015:89. doi: 10.1186/s13661-015-0350-4
  • Abdelrahman MAE, AlKhidhr H. A robust and accurate solver for some nonlinear partial differential equations and tow applications. Phys Scr. 2020;95:065212. doi: 10.1088/1402-4896/ab80e7
  • Abdelwahed HG, Abdelrahman MAE. New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev–Petviashvili-equation in nonthermal positron plasma. Results Phys. 2020;19:103393. doi: 10.1016/j.rinp.2020.103393
  • Abdelrahman MAE, AlKhidhr H. Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation. Results Phys. 2020;18:103294. doi: 10.1016/j.rinp.2020.103294
  • Inc M, Hassan SZ, Abdelrahman MAE, et al. Fundamental solutions for the long-short-wave interaction system. Open Phys. 2020;18(1):1093–1099. doi: 10.1515/phys-2020-0220
  • He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos Solitons Fract. 2006;30:700–708. doi: 10.1016/j.chaos.2006.03.020
  • Aminikhad H, Moosaei H, Hajipour M. Exact solutions for nonlinear partial differential equations via Exp-function method. Numer Methods Partial Differ Equ. 2009;26:1427–1433.
  • Griguolo L, Seminara D. Chiral solitons from dimensional reduction of Chern–Simons gauged nonlinear Schrodinger equation: classical and quantum aspects. Nucl Phys B. 1998;516(12):467–498. doi: 10.1016/S0550-3213(97)00810-9
  • Lee JH, Lin CK, Pashev OK. Shock waves, chiral solitons and semi-classical limit of one-dimensional anyons. Chaos Solitons Fract. 2004;19(1):109–128. doi: 10.1016/S0960-0779(03)00084-5
  • Ikezi H, Schwarzenegger K, Simsons AL, et al. Nonlinear self-modulation of ion-acoustic waves. Phys Fluids. 1978;21:239–248. doi: 10.1063/1.862198
  • Zakharov VE, Ostrovsky LA. Modulation instability: the beginning. Physica D. 2009;238(5):540–548. doi: 10.1016/j.physd.2008.12.002
  • Scott AC. Encyclopedia of nonlinear science. New York: Routledge, Taylor and Francis Group; 2005.
  • Alomair RA, Hassan SZ, Abdelrahman MAE, et al. New solitary optical solutions for the NLSE with δ-potential through Brownian process. Results Phys. 2022;40:105814. doi: 10.1016/j.rinp.2022.105814
  • Arshed S, Raza N, Javid A, et al. Chiral solitons of (2 + 1)-dimensional stochastic chiral nonlinear Schrödinger equation. Int J Geom Methods Mod Phys. 2022;19(10):2250149. doi: 10.1142/S0219887822501493
  • Raza N, Javid A, Butt AR, et al. Optical solitons and stability regions of the higher order nonlinear Schrödinger's equation in an inhomogeneous fiber. Int J Nonlinear Sci Numer Simul. 2021. doi: 10.1515/ijnsns-2021-0165 .