315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biodegradable potential of LLDPE/TiO2-ZnO film in soil and hydrolytic systems targeted for healthcare-related product

, ORCID Icon, , , &
Article: 2288301 | Received 04 Aug 2023, Accepted 22 Nov 2023, Published online: 22 Jan 2024

References

  • Gunatillake PA, Adhikari R. Nondegradable synthetic polymers for medical devices and implants. In: Biosynthetic polymers for medical applications; 2016. p. 33–62. doi:10.1016/b978-1-78242-105-4.00002-x
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1(3):161–176. doi:10.1016/j.bsbt.2015.08.002
  • Teo AJ, Mishra A, Park I, et al. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2(4):454–472. doi:10.1021/acsbiomaterials.5b00429
  • Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10(9):4033–4065. doi:10.3390/ijms10094033
  • Lendlein A, Behl M, Hiebl B, et al. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices. 2010;7(3):357–379. doi:10.1586/erd.10.8
  • Serrano MC, Ameer GA. Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci. 2012;12(9):1156–1171. doi:10.1002/mabi.201200097
  • Su CH, Chen HL, Ju SP, et al. The mechanical behaviors of polyethylene/silver nanoparticle composites: an insight from molecular dynamics study. Sci Rep. 2020;10(1):1–14. doi:10.1038/s41598-019-56847-4
  • Khanam PN, Al Maadeed MAA. Processing and characterization of polyethylene-based composites. Adv Manuf Polym Compos Sci. 2015;1(2):63–79. doi:10.1179/2055035915Y.0000000002
  • Malpass DB. Introduction to industrial polyethylene: properties, catalysts, and processes. London: John Wiley & Sons; 2010.
  • Paxton NC, Allenby MC, Lewis PM, et al. Biomedical applications of polyethylene. Eur Polym J. 2019;118:412–428. doi:10.1016/j.eurpolymj.2019.05.037
  • Dai S, Li Z, Meng Y, et al. A comprehensive review of synthesis, properties and modification of several common polyethylenes. In: Eighth international conference on energy materials and electrical engineering (ICEMEE 2022); 2023 Apr. SPIE. Vol. 12598. p. 830–839.
  • Chamanee G, Sewwandi M, Wijesekara H, et al. Global perspective on microplastics in landfill leachate; occurrence, abundance, characteristics, and environmental impact. Waste Manage. 2023;171:10–25. doi:10.1016/j.wasman.2023.08.011
  • Albertsson AC, Karlsson S. Polyethylene degradation and degradation products; 1990.
  • Suresh B, Maruthamuthu S, Palanisamy N, et al. Investigation on biodegradability of polyethylene by bacillus cereus strain Ma-Su isolated from compost soil. Int Res J Microbiol. 2011;2(2):292–302.
  • Khabbaz F, Albertsson AC. Rapid test methods for analyzing degradable polyolefins with a pro-oxidant system. J Appl Polym Sci. 2001;79(12):2309–2316. doi:10.1002/1097-4628(20010321)79:12<2309::AID-APP1038>3.0.CO;2-E
  • Lim BKH, San Thian E. Biodegradation of polymers in managing plastic waste – a review. Sci Total Environ. 2022;813:151880. doi:10.1016/j.scitotenv.2021.151880
  • Kulkarni A, Dasari H. Current status of methods used in degradation of polymers: a review. MATEC Web Conf. 2018;144:02023. doi:10.1051/matecconf/201814402023
  • Zhou Q, Song H, Sun T, et al. Cataluminescence on 2D WS2 nanosheets surface for H2S sensing. Sens Actuators B. 2022;353:131111. doi:10.1016/j.snb.2021.131111
  • Su Y, Liu Y, Li W, et al. Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz. 2023;10(3):842–851. doi:10.1039/D2MH01466A
  • Borelbach P, Kopitzky R, Dahringer J, et al. Degradation behavior of biodegradable man-made fibers in natural soil and in compost. Polymers. 2023;15(13):2959. doi:10.3390/polym15132959
  • Meng K, Teng Y, Ren W, et al. Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: a microcosm study. Sci Total Environ. 2023;865:161207. doi:10.1016/j.scitotenv.2022.161207
  • Harun NH, Mydin RBS, Sreekantan S, et al. LLDPE/TiO2-ZnO nanocomposite films induces transitory oxidative stress response on human fibroblast and blood cell lines models. J Biomim Biomater Biomed Eng. 2023;61:77–91. doi:10.4028/p-2aa27K
  • Harun NH, Mydin RBS, Sreekantan S, et al. In vitro bio-interaction responses and hemocompatibility of nano-based linear low-density polyethylene polymer embedded with heterogeneous TiO2/ZnO nanocomposites for biomedical applications. J Biomater Sci Polym Ed. 2021;32(10):1301–1311. doi:10.1080/09205063.2021.1916866
  • Harun NH, Mydin RBS, Sreekantan S, et al. Bactericidal capacity of a heterogeneous TiO2/ZnO nanocomposite against multidrug-resistant and non-multidrug-resistant bacterial strains associated with nosocomial infections. ACS Omega. 2020;5(21):12027–12034. doi:10.1021/acsomega.0c00213
  • Harun NH, Mydin RBSN, Sreekantan S, et al. The bactericidal potential of LLDPE with TiO2/ZnO nanocomposites against multidrug resistant pathogens associated with hospital acquired infections. J Biomater Sci Polym Ed. 2020;31(14):1757–1769. doi:10.1080/09205063.2020.1775759
  • Basiron N, Sreekantan S, Jit Kang L, et al. Coupled oxides/LLDPE composites for textile effluent treatment: effect of neem and PVA stabilization. Polymers. 2020;12(2):394. doi:10.3390/polym12020394
  • Harun NH, Mydin RBSN, Noordin SS, et al. Hemocompatibility profiles of LLDPE with TiO2/ZnO nanocomposites for biomedical application according to ISO 10993-4 And ASTM 756-00 (2000) guidelines. BioNanoScience. doi:10.1007/s12668-023-011182-2
  • Harun NH, Mydin RBS, Sreekantan S, et al. In vitro biodegradation evaluation of linear low density polyethylene embedded with TiO2/ZnO couple oxides. IOP Conf Ser Mater Sci Eng. 2020;932(1):12032. doi:10.1088/1757-899X/932/1/012032
  • Li H, Chang J, Cao A, et al. In vitro evaluation of biodegradable poly (butylene succinate) as a novel biomaterial. Macromol Biosci. 2005;5(5):433–440.
  • Sintim HY, Bary AI, Hayes DG, et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci Total Environ. 2020;727:138668. doi:10.1016/j.scitotenv.2020.138668
  • Raghavan D. Characterization of biodegradable plastics. Polym Plast Technol Eng. 1995;34(1):41–63. doi:10.1080/03602559508017212
  • Oyane A, Kim HM, Furuya T, et al. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65(2):188–95.
  • Harun NH, Mydin RBS, Sreekantan S, et al. In vitro biodegradation evaluation of linear low density polyethylene embedded with TiO2/ZnO couple oxides. IOP Conf Ser Mater Sci Eng. 2020;932(1):12032. doi:10.1088/1757-899x/932/1/012032
  • Pathak VM. Review on the current status of polymer degradation: a microbial approach. Bioresour. 2017;4(1):1–31.
  • Vaverková MD, Adamcová D, Hermanová S, et al. Ecotoxicity of composts containing aliphatic-aromatic copolyesters. Pol J Environ Stud. 2015;24(4):1497–1505. doi:10.15244/pjoes/31227
  • Herman B, Biczak R, Rychter P, et al. Degradation of selected synthetic polyesters in the industrial compost heap: effect on compost properties and phytotoxicity. Proc ECOpole. 2010;4(1):133–140.
  • Ishigaki T, Sugano W, Nakanishi A, et al. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere. 2004;54(3):225–233. doi:10.1016/S0045-6535(03)00750-1
  • Zakaria L, Yee TL, Zakaria M, et al. Diversity of microfungi in sandy beach soil of Teluk Aling, Pulau Pinang. Trop Life Sci Res. 2011;22(1):71.
  • Balasubramanian V, Natarajan K, Hemambika B, et al. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol. 2010;51(2):205–211.
  • Kyaw BM, Champakalakshmi R, Sakharkar MK, et al. Biodegradation of low density polythene (LDPE) by Pseudomonasspecies. Indian J Microbiol. 2012;52(3):411–419.
  • Diantoro M, Kusumaatmaja A, Triyana K. Study on photocatalytic properties of TiO2 nanoparticle in various pH condition. J Phys Conf Ser. 2018;1011(1):12069.
  • Saharudin KA, Sreekantan S, Basiron N, et al. 3ZnO/TiO2 coupled oxides LLDPE nanocomposite: effect of various weight percent of sol-gel synthesized catalyst on structural and bacteriostatic activity against S. aureus and E. coli. Biomed J Sci Tech Res. 2018;8(4):1–10.
  • Pant B, Ojha GP, Kuk YS, et al. Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties. Nanomaterials. 2020;10(10):1960. doi:10.3390/nano10101960
  • Sangareswari M, Sundaram MM. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment. Appl Water Sci. 2017;7(4):1781–1790. doi:10.1007/s13201-015-0351-6
  • Luo YB, Wang XL, Wang YZ. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stab. 2012;97(5):721–728.
  • Tu-morn M, Pairoh N, Sutapun W, et al. Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films. Mater Today Proc. 2019;17:2048–2061.
  • Antunes A, Popelka A, Aljarod O, et al. Effects of rutile–TiO2 nanoparticles on accelerated weathering degradation of poly(lactic acid). Polymers. 2020;12(5):1096. doi:10.3390/polym12051096
  • Zaaba NF, Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Eng Sci. 2020;60(9):2061–2075. doi:10.1002/pen.25511
  • Massey S, Adnot A, Rjeb A, et al. Action of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopy. Express Polym Lett. 2007;1(8):506–511. doi:10.3144/expresspolymlett.2007.72
  • Kapri A, Zaidi MGH, Goel R. Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film. J Microbiol Biotechnol 2010;20(6):1032–1041. doi:10.4014/jmb.0912.12026
  • Venubabu Thati A, Roy S, Prasad MA, et al. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. J Biosci Tech. 2010;1(2):64–69.
  • Mohan K. Microbial deterioration and degradation of polymeric materials. J Biochem Technol. 2011;2(4):210–215.