212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Finite difference simulation of natural convection of two-phase hybrid nanofluid along a vertical heated wavy surface

, , & ORCID Icon
Article: 2358548 | Received 16 Feb 2024, Accepted 14 May 2024, Published online: 24 May 2024

References

  • Kumar DD, Arasu AV. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev. 2018;81:1669–1689. doi: 10.1016/j.rser.2017.05.257
  • Garoosi F, Garoosi S, Hooman K. Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using buongiorno model. Powder Technol. 2014;268:279–292. doi: 10.1016/j.powtec.2014.08.006
  • Hossain A, Anee MJ, Thohura S, et al. Finite difference simulation of free convection of non-Newtonian nanofluids with radiation effects over a truncated wavy cone. Pramana. 2023;97(4):168. doi: 10.1007/s12043-023-02642-w
  • Hemmat Esfe M, Esfandeh S, Bahiraei M. A two-phase simulation for investigating natural convection characteristics of nanofluid inside a perturbed enclosure filled with porous medium. Eng Comput. 2022;38(3):2451–2468. doi: 10.1007/s00366-020-01204-7
  • Kumar V, Sarkar J. Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. Int Commun Heat Mass Transf. 2018;91:239–247. doi: 10.1016/j.icheatmasstransfer.2017.12.019
  • Islam MM, Hasan MF, Molla MM. Analysis of heat transfer characteristics of MHD ferrofluid by the implicit finite difference method at temperature-dependent viscosity along a vertical thin cylinder. Iran J Sci Technol Trans Mech Eng. 2024;48:177–192.
  • Molla MM, Hossain MA, Yao LS. Natural convection flow along a vertical wavy surface with uniform surface temperature in presence of heat generation/absorption. Int J Therm Sci. 2004;43(2):157–163. doi: 10.1016/j.ijthermalsci.2003.04.001
  • Rahman A, Molla M, Sarker M. Natural convection flow along the vertical wavy cone in case of uniform surface heat flux where viscosity is an exponential function of temperature. Int Commun Heat Mass Transf. 2011;38(6):774–780. doi: 10.1016/j.icheatmasstransfer.2011.03.021
  • Zhang L, Bhatti M, Michaelides EE, et al. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur Phys J Spec Top. 2022;231:521–533.
  • Ahmad S, Nadeem S, Khan MN. Enhanced transport properties and its theoretical analysis in two-phase hybrid nanofluid. Appl Nanosci. 2022;12:309–316.
  • Ibrahim M, Abidi A, Algehyne EA, et al. Improvement of the energy and exergy efficiencies of the parabolic solar collector equipped with a twisted turbulator using SWCNT–Cu/water two-phase hybrid nanofluid. Sustain Energy Technol Assessm. 2022;49:101705.
  • Huminic G, Huminic A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review. J Mol Liq. 2020;302:112533. doi: 10.1016/j.molliq.2020.112533
  • Khan M, Hossain A, Parvin A, et al. Implicit finite difference simulation of hybrid nanofluid along a vertical thin cylinder with sinusoidal wall heat flux under the effects of magnetic field. Adv Math Phys. 2023;2023:1–18. doi: 10.1155/2023/6699888
  • Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–177. doi: 10.1016/j.rser.2014.11.023
  • Alsabery AI, Tayebi T, Kadhim HT, et al. Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J Adv Res. 2021;30:63–74. doi: 10.1016/j.jare.2020.09.008
  • Selimefendigil F, Öztop HF. The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems. Energy. 2020;213:118520. doi: 10.1016/j.energy.2020.118520
  • Ramgadia AG, Saha AK. Three-dimensional numerical study of turbulent flow and heat transfer in a wavy-walled duct. Int J Heat Mass Transf. 2013;67:98–117. doi: 10.1016/j.ijheatmasstransfer.2013.07.081
  • Yao L-S. Natural convection along a vertical complex wavy surface. Int J Heat Mass Transf. 2006;49(1–2):281–286. doi: 10.1016/j.ijheatmasstransfer.2005.06.026
  • Cho C-C, Chen C-L. Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface. J Nonnewton Fluid Mech. 2012;173:13–20. doi: 10.1016/j.jnnfm.2012.01.012
  • Siddiqa S, Begum N, Hossain MA, et al. Radiative heat transfer analysis of non-Newtonian dusty casson fluid flow along a complex wavy surface. Numer Heat Transf A Appl. 2018;73(4):209–221. doi: 10.1080/10407782.2017.1421741
  • Cho C-C, Chen C-L, Hwang J-J, et al. Natural convection heat transfer performance of non-Newtonian power-law fluids enclosed in cavity with complex-wavy surfaces. J Heat Transf. 2014;136(1):014502. doi: 10.1115/1.4025134
  • Yao L-S. Natural convection along a vertical wavy surface. ASME J Heat Transf. 1983;105:465–468. doi: 10.1115/1.3245608
  • Lavenda BH. Brownian motion. Sci Am. 1985;252(2):70–85. doi: 10.1038/scientificamerican0285-70
  • Klimontovich YL. Nonlinear Brownian motion. Phys Usp. 1994;37(8):737–766. doi: 10.1070/PU1994v037n08ABEH000038
  • Kac M. Random walk and the theory of Brownian motion. Am Math Mon. 1947;54(7P1):369–391. doi: 10.1080/00029890.1947.11990189
  • Bevensee R. Probabilistic potential theory applied to electrical engineering problems. Proc IEEE. 1973;61(4):423–437. doi: 10.1109/PROC.1973.9056
  • Rings D, Schachoff R, Selmke M, et al. Hot Brownian motion. Phys Rev Lett. 2010;105(9):090604. doi: 10.1103/PhysRevLett.105.090604
  • Haddad Z, Abu-Nada E, Oztop HF, et al. Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int J Therm Sci. 2012;57:152–162. doi: 10.1016/j.ijthermalsci.2012.01.016
  • Makinde O, Animasaun I. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J Mol Liq. 2016;221:733–743. doi: 10.1016/j.molliq.2016.06.047
  • Saghir M, Rahman M. Brownian motion and thermophoretic effects of flow in channels using nanofluid: a two-phase model. Int J Thermofluids. 2021;10:100085. doi: 10.1016/j.ijft.2021.100085
  • Saghir MZ, Mohamed A. Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles. Int J Numer Methods Heat Fluid Flow. 2018;28(1):47–63. doi: 10.1108/HFF-10-2016-0398
  • Chomiak J, Gupta AK. Thermophoresis in boundary layer flows. J Aerosol Sci. 1989;20(1):1–5. doi: 10.1016/0021-8502(89)90024-4
  • Pathak SK, Kumar R, Goel V, et al. Recent advancements in thermal performance of nano-fluids charged heat pipes used for thermal management applications: a comprehensive review. Appl Therm Eng. 2022;216:119023. doi: 10.1016/j.applthermaleng.2022.119023
  • Heris SZ, Shokrgozar M, Poorpharhang S, et al. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. J Dispers Sci Technol. 2014;35(5):677–684. doi: 10.1080/01932691.2013.805301
  • Kashyap D, Dass AK. Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al2O3–Cu/water nanofluid flow in a cavity. Int J Mech Sci. 2019;157:45–59. doi: 10.1016/j.ijmecsci.2019.04.014
  • Selimefendigil F, Öztop HF. Numerical study of forced convection of nanofluid flow over a backward facing step with a corrugated bottom wall in the presence of different shaped obstacles. Heat Transf Eng. 2016;37(15):1280–1292. doi: 10.1080/01457632.2015.1119617
  • Armaghani T, Sadeghi M, Rashad A, et al. MHD mixed convection of localized heat source/sink in an Al2O3–Cu/water hybrid nanofluid in L-shaped cavity. Alex Eng J. 2021;60(3):2947–2962. doi: 10.1016/j.aej.2021.01.031
  • Ahmed SE. Natural convection of dusty hybrid nanofluids in diverging–converging cavities including volumetric heat sources. J Therm Sci Eng Appl. 2021;13(1):011018. doi: 10.1115/1.4047275
  • Jakeer S, Reddy PB, Rashad A, et al. Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with Cattaneo–Christov heat flux pattern. Alex Eng J. 2021;60(1):821–835. doi: 10.1016/j.aej.2020.10.011
  • Matin MH, Dehsara M, Abbassi A. Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. Mechanics. 2012;18(4):415–423.
  • Devi SSU, Devi SA. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid Flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys. 2016;94(5):490–496. doi: 10.1139/cjp-2015-0799
  • Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571. doi: 10.1063/1.1700493
  • Maxwell JC. A treatise on electricity and magnetism. Vol. 1. Oxford: Clarendon Press: 1873.
  • Das S, Jana RN, Makinde OD. MHD flow of Cu–Al2O3/water hybrid nanofluid in porous channel: analysis of entropy generation. In: Defect and diffusion forum, Vol. 377. Trans Tech Publ; 2017, p. 42–61.
  • Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–250. doi: 10.1115/1.2150834
  • Molla M, Yao L. Non-Newtonian natural convection along a vertical heated wavy surface using a modified power-law viscosity model. Int J Heat Transf. 2009;131:012501. doi: 10.1115/1.2977556
  • Molla M, Yao L. Mixed convection of non-Newtonian fluids along a heated vertical flat plate. Int J Heat Mass Transf. 2009;52(13-14):3266–3271. doi: 10.1016/j.ijheatmasstransfer.2009.01.025
  • Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48. doi: 10.1016/j.physrep.2018.11.004
  • Li X, Zou C, Wang T, et al. Rheological behavior of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf. 2015;84:925–930. doi: 10.1016/j.ijheatmasstransfer.2015.01.104
  • Nasrin R, Alim M, Chamkha AJ. Buoyancy-driven heat transfer of water–Al2O3 nanofluid in a closed chamber: effects of solid volume fraction, Prandtl number and aspect ratio. Int J Heat Mass Transf. 2012;55(25–26):7355–7365. doi: 10.1016/j.ijheatmasstransfer.2012.08.011
  • Abu-Nada E, Masoud Z, Oztop HF, et al. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49(3):479–491. doi: 10.1016/j.ijthermalsci.2009.09.002