192
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sonosynthesis and artificial intelligence-enhanced characterization of PEGylated Camellia sinensis-encapsulated zinc oxide nanoparticles: cytotoxicity capacity against cervical cancer and fibroblast cells

, , , , & ORCID Icon
Article: 2363579 | Received 08 Mar 2024, Accepted 30 May 2024, Published online: 08 Jun 2024

References

  • Mohammadzadeh P, Ardestani MS, Mortazavi-Derazkola S, et al. PEG-Citrate dendrimer second generation: is this a good carrier for imaging agents In vitro and In vivo? IET Nanobiotechnol. 2019;13(6):560–564. doi: 10.1049/iet-nbt.2018.5360
  • Hashemi Z, Mizwari ZM, Mohammadi-Aghdam S, et al. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab J Chem. 2022;15:103525. doi: 10.1016/j.arabjc.2021.103525
  • Ebrahimzadeh MA, Hashemi Z, Mohammadyan M, et al. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf Interfaces. 2021;23:100963. doi: 10.1016/j.surfin.2021.100963
  • Khormali K, Mizwari ZM, Masoumeh Ghoreishi S, et al. Novel Dy2O3/ZnO-Au ternary nanocomposites: green synthesis using pomegranate fruit extract, characterization and their photocatalytic and antibacterial properties. Bioorg Chem. 2021;115:105204. doi: 10.1016/j.bioorg.2021.105204
  • Hashemi Z, Shirzadi-Ahodashti M, Mortazavi-Derazkola S, et al. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg Chem Commun. 2022;139:109320. doi: 10.1016/j.inoche.2022.109320
  • Fouladi-Fard R, Aali R, Mohammadi-Aghdam S, et al. The surface modification of spherical ZnO with Ag nanoparticles: a novel agent, biogenic synthesis, catalytic and antibacterial activities. Arab J Chem. 2022;15:103658. doi: 10.1016/j.arabjc.2021.103658
  • Shirzadi-Ahodashti M, Hashemi Z, Mortazavi Y, et al. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf A Physicochem Eng Asp. 2021;617:126383. doi: 10.1016/j.colsurfa.2021.126383
  • Dutta D, Das BM. Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: a review on synthesis and applications of green nanoparticles. Environ Nanotechnol Monit Manag. 2021;15:100418. doi: 10.1016/J.ENMM.2020.100418
  • Liu D, Liu L, Yao L, et al. Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. J Drug Deliv Sci Technol. 2020;55:101364. doi: 10.1016/j.jddst.2019.101364
  • Malathi S, Balashanmugam P, Devasena T, et al. Enhanced antibacterial activity and wound healing by a novel collagen blended ZnO nanoparticles embedded niosome nanocomposites. J Drug Deliv Sci Technol. 2021;63:102498. doi: 10.1016/j.jddst.2021.102498
  • Danışman-Kalındemirtaş F, Afşin Kariper İ, Erdemir G, et al. Evaluation of anticancer effects of carboplatin-gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci Rep. 12(123AD):10686. doi: 10.1038/s41598-022-15051-7
  • Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem. 2018;23(8):1185–1204. doi: 10.1007/s00775-018-1600-6
  • Khan ST, Ahmad J, Ahamed M, et al. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. J Biol Inorg Chem. 2016;21(3):295–303. doi: 10.1007/s00775-016-1339-x
  • Ahmad J, Wahab R, Siddiqui MA, et al. Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J Biol Inorg Chem. 2020;25(2):325–338. doi: 10.1007/s00775-020-01764-5
  • Ansari MA, Mousa S, Asiri M, et al. Biofabricated fatty acids-capped silver nanoparticles as potential antibacterial, antifungal, antibiofilm and anticancer agents. Pharmaceuticals. 2021;14(2):139. doi: 10.3390/ph14020139
  • Khan FA, Lammari N, Muhammad Siar AS, et al. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine (Lond). 2020;15(10):969–980. doi: 10.2217/nnm-2019-0429
  • Khan FA, Akhtar S, Almofty SA, et al. FMSP-Nanoparticles induced cell death on human breast adenocarcinoma cell line (MCF-7 cells): morphometric analysis. Biomolecules. 2018;8(2):32. doi: 10.3390/BIOM8020032
  • Thirupathi B, Pongen YL, Kaveriyappan GR, et al. Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity. Front Microbiol. 2024;15:1358467. doi: 10.3389/fmicb.2024.1358467
  • Hamdani AM, Wani IA, Bhat NA. Sources, structure, properties and health benefits of plant gums: a review. Int J Biol Macromol. 2019;135:46–61. doi: 10.1016/j.ijbiomac.2019.05.103
  • Li F, Qasim S, Li D, et al. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol. 2022;83:335–352. doi: 10.1016/J.SEMCANCER.2020.11.018
  • Su J, Liao T, Ren Z, et al. Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. Int J Biol Macromol. 2023;238:124088. doi: 10.1016/j.ijbiomac.2023.124088
  • Ganesh Kumar A, Pugazhenthi E, Sankarganesh P, et al. Microfibrillated cellulose from pine cone: extraction, properties, and characterization. Biomass Convers Biorefin. 2023;13:1–8. doi: 10.1007/s13399-021-01794-2
  • Chen X, Li Y, Lin Q, et al. Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Sci Rep. 2014;4(4). doi: 10.1038/srep04416
  • Velsankar K, Parvathy G, Sankaranarayanan K, et al. Green synthesis of silver oxide nanoparticles using Panicum miliaceum grains extract for biological applications. Adv Powder Technol. 2022;33:103645. doi: 10.1016/j.apt.2022.103645
  • Taha KK, Modwi A, Elamin MR, et al. Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J Photochem Photobiol A Chem. 2020;390:112263. doi: 10.1016/j.jphotochem.2019.112263
  • Deshpande SS, Veeragoni D, Rachamalla HK, et al. Anticancer properties of ZnO-Curcumin nanocomposite against melanoma cancer and its genotoxicity profiling. J Drug Deliv Sci Technol. 2022;75:103703. doi: 10.1016/j.jddst.2022.103703
  • Umavathi S, Subash M, Gopinath K, et al. Facile synthesis and characterization of ZnO nanoparticles using Abutilon indicum leaf extract: An eco-friendly nano-drug on human microbial pathogens. J Drug Deliv Sci Technol. 2021;66:102917. doi: 10.1016/j.jddst.2021.102917
  • Deivanathan SK, Thomas J, Prakash J, et al. Bio-synthesis of silver nanoparticles using leaf extract of Rhaphidophora pertusa and its characterization, antimicrobial, antioxidant and cytotoxicity activities. Res Chem Intermed. 2023;49(2):423–439. doi: 10.1007/s11164-022-04888-2
  • Sivakumari G, Rajarajan M, Senthilvelan S. Microwave-assisted synthesis and characterization of activated carbon–zirconium-incorporated CeO2 nanocomposites for photocatalytic and antimicrobial activity. Res Chem Intermed. 2023;49:3539–3561. doi: 10.1007/s11164-023-04968-x
  • Shehata EMM, Gowayed MA, El-Ganainy SO, et al. Pectin coated nanostructured lipid carriers for targeted piperine delivery to hepatocellular carcinoma. Int J Pharm. 2022;619:121712. doi: 10.1016/j.ijpharm.2022.121712
  • Shome S, Das Talukdar A, Nath R, et al. Curcumin-ZnO nanocomposite mediated inhibition of Pseudomonas aeruginosa biofilm and its mechanism of action. J Drug Deliv Sci Technol. 2023;81:104301. doi: 10.1016/j.jddst.2023.104301
  • Greeshma KP, Thamizselvi R. Phytogenic synthesis of ZnO nanoparticles from Catharanthus Roseus and Morinda Citrifolia leaf extract and its promising multifunctional biological applications. J Drug Deliv Sci Technol. 2023;87:104785. doi: 10.1016/j.jddst.2023.104785
  • Schröder L, Marahrens P, Koch JG, et al. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF–7 and MDA-MB-231 breast carcinoma cells. Oncol Rep. 2018;41:387–396. doi: 10.3892/or.2018.6789
  • Devkota HP, Gaire BP, Hori K, et al. The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends Food Sci Technol. 2021;118:735–743. doi: 10.1016/j.tifs.2021.10.021
  • Kochman J, Jakubczyk K, Antoniewicz J, et al. Health benefits and chemical composition of matcha green Tea: a review. Molecules. 2021;26(1):85. doi: 10.3390/molecules26010085
  • Lizoňová D, Hládek F, Chvíla S, et al. Surface stabilization determines macrophage uptake, cytotoxicity, and bioactivity of curcumin nanocrystals. Int J Pharm. 2022;626:122133. doi: 10.1016/j.ijpharm.2022.122133
  • Sekowski S, Terebka M, Veiko A, et al. Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin—theoretical and experimental studies. J Photochem Photobiol A Chem. 2018;356:379–388. doi: 10.1016/j.jphotochem.2018.01.018
  • Keckstein S, Tilgener C, Jeschke U, et al. Effects of matcha tea extract on cell viability and peroxisome proliferator-activated receptor γ expression on T47D breast cancer cells. Arch Gynecol Obstet. 2022;306:451–459. doi: 10.1007/s00404-021-06381-4
  • Farhan M. Green Tea catechins: nature’s Way of preventing and treating cancer. Int J Mol Sci. 2022;23(18):10713. doi: 10.3390/ijms231810713
  • Zhang W, Cho WC, Bloukh SH, et al. An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol. 2022;212:358–369. doi: 10.1016/j.ijbiomac.2022.05.150
  • Abed NN, Abou El-Enain IMM, El-Husseiny Helal E, et al. Novel biosynthesis of tellurium nanoparticles and investigation of their activity against common pathogenic bacteria. J Taibah Univ Med Sci. 2023;18(2):400–412. doi: 10.1016/J.JTUMED.2022.10.006
  • Tulbah AS. In vitro bio-characterization of solid lipid nanoparticles of favipiravir in A549 human lung epithelial cancer cells. J Taibah Univ Med Sci. 2023;18:1076–1086. doi: 10.1016/J.JTUMED.2023.02.014
  • Shakib P, Mirzaei SZ, Lashgarian HE, et al. Preparation of zinc oxide nanoparticles assisted by okra mucilage and Evaluation of its biological activities. Curr Drug Discov Technol. 2023;20; doi: 10.2174/1570163820666221201090006
  • Karkhane M, Lashgarian HE, Mirzaei SZ, et al. Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract. Biocatal Agric Biotechnol. 2020;29:101791. doi: 10.1016/j.bcab.2020.101791
  • Gilavand F, Saki R, Zahra Mirzaei S, et al. Green synthesis of zinc nanoparticles using aqueous extract of magnoliae officinalis and assessment of its bioactivity potentials. Biointerface Res Appl Chem. 2020;11(1):7765–7774. doi: 10.33263/BRIAC111.77657774
  • Cheraghipour K, Khalaf AK, Moradpour K, et al. Synthesis, characterization, and antiparasitic effects of zinc oxide nanoparticles-eugenol nanosuspension against Toxoplasma gondii infection. Heliyon. 2023;9(8):e19295. doi: 10.1016/j.heliyon.2023.e19295
  • Ullah A, Saadullah M, Alvi F, et al. Synergistic effect of silver doped ZnO nanomaterials enhances the anticancer potential against A459 lung cancer cells. J King Saud Univ Sci. 2022;34:101724. doi: 10.1016/j.jksus.2021.101724
  • Yadav S, Sadique MA, Pal M, et al. Cytotoxicity and DNA fragmentation-mediated apoptosis response of hexagonal ZnO nanorods against human prostate cancer cells. Appl Surf Sci Advan. 2022;9:100237. doi: 10.1016/j.apsadv.2022.100237
  • Panigrahi G, Medhi H, Wasnik K, et al. Hollow mesoporous SiO2–ZnO nanocapsules and effective in vitro delivery of anticancer drugs against different cancers with low doses of drugs. Mater Chem Phys. 2022;287:126287. doi: 10.1016/j.matchemphys.2022.126287
  • Hussein BY, Mohammed AM. Green synthesis of ZnO nanoparticles in grape extract: their application as anti-cancer and anti-bacterial. Mater Today Proc. 2021;42:A18–A26. doi: 10.1016/j.matpr.2021.03.729
  • AbuMousa RA, Baig U, Gondal MA, et al. Investigation of the survival viability of cervical cancer cells (HeLa) under visible light induced photo-catalysis with facile synthesized WO3/ZnO nanocomposite. Saudi J Biol Sci. 2020;27:1743–1752. doi: 10.1016/j.sjbs.2020.04.038
  • Murali M, Manjula S, Shilpa N, et al. Facile synthesis of ZnO-NPs from yellow creeping daisy (Sphagneticola trilobata L.) attenuates cell proliferation by inducing cellular level apoptosis against colon cancer. J King Saud Univ Sci. 2022;34:102084. doi:10.1016/j.jksus.2022.102084
  • Jevapatarakul D, T-Thienprasert J, Payungporn S, et al. Utilization of Cratoxylum formosum crude extract for synthesis of ZnO nanosheets: characterization, biological activities and effects on gene expression of nonmelanoma skin cancer cell. Biomed Pharmacother. 2020;130:110552. doi: 10.1016/j.biopha.2020.110552
  • Eswari KM, Asaithambi S, Karuppaiah M, et al. Green synthesis of ZnO nanoparticles using Abutilon Indicum and Tectona Grandis leaf extracts for evaluation of anti-diabetic, anti-inflammatory and in-vitro cytotoxicity activities. Ceram Int. 2022;48(22):33624–33634. doi: 10.1016/j.ceramint.2022.07.308
  • Nava OJ, Luque PA, Gómez-Gutiérrez CM, et al. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct. 2017;1134:121–125. doi: 10.1016/j.molstruc.2016.12.069
  • Çolak H. Siyah Çay (camellia sinensis) sulu ekstraktı kullanılarak nanotanecikli ZnO İnce filminin Üretilmesi ve karakterize edilmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;8(4):163–170. doi: 10.21597/JIST.409028
  • Gonzalez RC, Woods RE, Digital image processing third edition Pearson international edition prepared by Pearson Education. Upper Saddle River, NJ: Prentice Hall; n.d.
  • Haralick RM, Dinstein I, Shanmugam K. Textural features for image classification. EEE Trans Syst Man Cybern. 1973;SMC-3(6):610–621. doi: 10.1109/TSMC.1973.4309314
  • Duran H, Alkan FÜ, Ulkay MB, et al. Investigation of the in vitro cytotoxic effects and wound healing activity of ternary composite substance (hollow silica sphere/gum arabic/methylene blue). Int J Biol Macromol. 2019;121:1194–1202. doi: 10.1016/j.ijbiomac.2018.10.098
  • Alamdari S, Mirzaee O, Nasiri Jahroodi F, et al. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surf Interfaces. 2022;34:102349. doi: 10.1016/j.surfin.2022.102349
  • Karakuş S, Baytemir G, Özeroğlu CN. An ultra-sensitive smartphone-integrated digital colorimetric and electrochemical Camellia sinensis polyphenols encapsulated CuO nanoparticles-based ammonia biosensor. Inorg Chem Commun. 2022;143:109733. doi: 10.1016/j.inoche.2022.109733
  • Goudarzi A, Zabihi E, Shahrampour D, et al. Eco-friendly synthesis of large band gap ZnO nanoparticles by trisodium citrate: investigation of annealing effect on structural and optical properties. J Mater Sci Mater Electron. 2022;33:22798–22809. doi: 10.1007/s10854-022-09047-2
  • Aga KW, Efa T, Beyene TT. Effects of sulfur doping and temperature on the energy Bandgap of ZnO Nanoparticles and Their Antibacterial Activities. ACS Omega. 2022;7:10796–10803. doi: 10.1021/acsomega.2c00647
  • Xiao J, Zou C, Liu M, et al. Mixing in a soft-elastic reactor (SER) characterized using an RGB based image analysis method. Chem Eng Sci. 2018;181:272–285. doi: 10.1016/j.ces.2018.02.019
  • Guo G, Zheng Q, Li T, et al. 3D printed self-calibrating on-site sensing platform based on bimodal excitation carbon dots for visual 4-nitrophenol detection by means of the localization of inner filter effect and pH regulation. Chem Eng Sci. 2023;281:119201. doi: 10.1016/j.ces.2023.119201
  • Panckow RP, Bliatsiou C, Nolte L, et al. Characterisation of particle stress in turbulent impeller flows utilising photo-optical measurements of a flocculation system – PART 1. Chem Eng Sci. 2023;267:118333. doi: 10.1016/j.ces.2022.118333
  • Thomas S, Gunasangkaran G, Arumugam VA. Synthesis and characterization of zinc oxide nanoparticles of solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol Trace Elem Res. 2022;200(6):2684–2697. doi: 10.1007/s12011-021-02898-6
  • Naiel B, Fawzy M, Halmy MWA, et al. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep. 2022;12(1):1–12. doi: 10.1038/s41598-022-24805-2
  • Ilangovan A, Venkatramanan A, Thangarajan P, et al. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous extract of tagetes erecta flower and evaluation of its antioxidant, antimicrobial, and cytotoxic activities on HeLa cell line. Curr Biotechnol. 2021;10:61–76. doi: 10.2174/2211550109999201202123939
  • El-Waseif AA, El-Ghwas DE. Anti-breast cancer and cytotoxicity of nano materials formed bacterial cellulose-ZnO-Ag composite. Mater Today Proc. 2022;60:1651–1655. doi: 10.1016/j.matpr.2021.12.193
  • Anitha J, Selvakumar R, Hema S, et al. Facile green synthesis of nano-sized ZnO using leaf extract of Morinda tinctoria: MCF-7 cell cycle arrest, antiproliferation, and apoptosis studies. J Ind Eng Chem. 2022;105:520–529. doi: 10.1016/j.jiec.2021.10.008
  • Shahriary S, Tafvizi F, Khodarahmi P, et al. Phyto-mediated synthesis of CuO nanoparticles using aqueous leaf extract of Artemisia deserti and their anticancer effects on A2780-CP cisplatin-resistant ovarian cancer cells. Biomass Convers Biorefin. 2022;1:1–17. doi: 10.1007/S13399-022-02436-X/FIGURES/11
  • Resmi R, Yoonus J, Beena B. A novel greener synthesis of ZnO nanoparticles from Nilgiriantusciliantus leaf extract and evaluation of its biomedical applications. Mater Today Proc. 2021;46:3062–3068. doi: 10.1016/j.matpr.2021.02.498
  • Barreira S, Moutinho C, Silva AMN, et al. Phytochemical characterization and biological activities of green tea (Camellia sinensis) produced in the Azores, Portugal. Portugal, Phytomedicine Plus. 2021;1:100001. doi: 10.1016/j.phyplu.2020.100001
  • Fan D-M, Fan K, Yu C-P, et al. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. J Zhejiang Univ Sci B. 2017;18(2):99–108. doi: 10.1631/jzus.B1600044
  • Ravindranath MH, Saravanan TS, Monteclaro CC, et al. Epicatechins purified from green Tea (camellia sinensis) differentially suppress growth of gender-dependent human cancer cell lines. eCAM. 2006;3:237–247. doi: 10.1093/ecam/nel003
  • Xiang L-P, Wang A, Ye J-H, et al. Suppressive effects of Tea catechins on breast cancer. Nutrients. 2016;8(8):458. doi: 10.3390/nu8080458
  • Wang Y, Jin HY, Fang MZ, et al. Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats. World J Gastroenterol. 2020;26:2064–2081. doi: 10.3748/wjg.v26.i17.2064
  • Hayakawa S, Ohishi T, Miyoshi N, et al. Anti-Cancer effects of green Tea epigallocatchin-3-gallate and coffee chlorogenic acid. Molecules. 2020;25(19):4553. doi: 10.3390/molecules25194553
  • Shirakami Y, Shimizu M. Possible mechanisms of green Tea and Its constituents against cancer. Molecules. 2018;23(9):2284. doi: 10.3390/molecules23092284
  • Sharifi-Rad M, Pezzani R, Redaelli M, et al. Preclinical activities of epigallocatechin gallate in signaling pathways in cancer. Molecules. 2020;25(3):467), doi: 10.3390/molecules25030467
  • Bisht G, Rayamajhi S. Zno nanoparticles: A promising anticancer agent. Nanobiomedicine (Rij). 2016;3. doi: 10.5772/63437/ASSET/IMAGES/LARGE/10.5772_63437-FIG3.JPEG
  • Tabrez S, Khan AU, Hoque M, et al. Biosynthesis of ZnO NPs from pumpkin seeds’ extract and elucidation of its anticancer potential against breast cancer. Nanotechnol Rev. 2022;11:2714–2725. doi: 10.1515/ntrev-2022-0154
  • Al-Ghamdi SA, Alkathiri TA, Alfarraj AE. Green synthesis and characterization of zinc oxide nanoparticles using Camellia sinensis tea leaf extract and their antioxidant, anti-bactericidal and anticancer efficacy. Res Chem Intermed. 2022;48(11):4769–4783. doi: 10.1007/s11164-022-04845-z
  • Saeed F, Younas M, Fazal H. Green and chemically synthesized zinc oxide nanoparticles: effects on in-vitro seedlings and callus cultures ofSilybum marianumand evaluation of their antimicrobial and anticancer potential. Artif Cells Nanomed Biotechnol. 2021;49:450–460. doi: 10.1080/21691401.2021.1926274
  • Pavithra M, Jessie Raj MB. Synthesis of ultrasonic assisted co-precipitated Ag/ZnO nanorods and their profound anti-liver cancer and antibacterial properties. Mater Sci Eng B. 2022;278:115653. doi: 10.1016/j.mseb.2022.115653
  • Truong Hoang Q, Ravichandran V, Nguyen Cao TG, et al. Piezoelectric Au-decorated ZnO nanorods: Ultrasound-triggered generation of ROS for piezocatalytic cancer therapy. Chem Eng J. 2022;435:135039. doi: 10.1016/j.cej.2022.135039
  • Ali S, Govindaraj Sudha K, Karunakaran G, et al. Anticancer and photocatalytic activities of zinc oxide nanorods synthesized from Manilkara littoralis leaf extract. Mater Chem Phys. 2022;277:125541. doi: 10.1016/j.matchemphys.2021.125541
  • Wahab R, Khan F, Kaushik N, et al. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol in Vitro. 2022;85:105460. doi: 10.1016/j.tiv.2022.105460