53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced anticancer effect of newly synthesised albumin-bound Fe(III)-S-Methyl-thiosemicarbazones on breast cancer cells

, , , , ORCID Icon, , & show all
Article: 2375454 | Received 22 Feb 2024, Accepted 28 Jun 2024, Published online: 15 Jul 2024

References

  • Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66. doi:10.1038/s41572-019-0111-2
  • Siegel Mph RL, Giaquinto AN, Dvm J, et al. Cancer Statistics. 2024;74; doi:10.3322/caac.21820
  • Ashrafizadeh M, Zarrabi A, Bigham A, et al. (Nano)platforms in breast cancer therapy: drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev. 2023;43:2115–2176. doi:10.1002/med.21971
  • Richardson D, Kaya B. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent and Selective Anti-Tumor Activity, (2023). https://jpet.aspetjournals.org/content/385/S3/37.abstract (accessed December 19, 2023).
  • Gregory H, Jensen TR, Pettinari C, et al. Trivalent cobalt complexes with NNS tridentate thiosemicarbazones: preparation, structural study and investigation of antibacterial activity and cytotoxicity against human breast cancer cells. Inorganics. 2022;10(10):145), doi:10.3390/INORGANICS10090145
  • Asadipour E, Asgari M, Mousavi P, et al. Nano-biotechnology and challenges of drug delivery system in cancer treatment pathway: review article. Review Article, Chem Biodivers. 2023;20:e202201072), doi:10.1002/cbdv.202201072
  • Haghighi SM, Tafvizi F, Mirzaie A. Encapsulation of artemisia scoparia extract in chitosan-myristate nanogel with enhanced cytotoxicity and apoptosis against hepatocellular carcinoma cell line (Huh-7). Ind Crops Prod. 2020;155:112790), doi:10.1016/j.indcrop.2020.112790
  • Rezaie Amale F, Ferdowsian S, Hajrasouliha S, et al. Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer. Adv Powder Technol. 2021;32:4711–4722. doi:10.1016/j.apt.2021.10.019
  • Haddadian A, Robattorki FF, Dibah H, et al. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep. 2022;12:1–16. doi:10.1038/s41598-022-26400-x
  • Santhosh P, Mukhtar LA, Kamaraj M, et al. Phytomediated synthesis of copper oxide nanoparticles from floating fern salvinia cucullata roxb. and their antibacterial, antioxidant, and anticancer potential. Biomass Convers Biorefin. 2023;7:1–15. doi:10.1007/S13399-023-04700-0/FIGURES/11
  • Abirami P, Sampath S, Al-Ansari MM, et al. One-pot synthesis of Ag-Cr bimetallic nanoparticles from catharanthus roseus for anti-bacterial, anticancer, anti-diabetic, and anti-inflammatory activity and toxicity study in zebrafish. Biomass Convers Biorefin. 2023;1:1–15. doi:10.1007/S13399-023-04767-9/FIGURES/11
  • Balasubramanian A, Ganesan R, Mohanta YK, et al. Characterization of bioactive fatty acid metabolites produced by the halophilic idiomarina sp. OM679414.1 for their antimicrobial and anticancer activity. Biomass Convers Biorefin. 2023;1:1–10. doi:10.1007/S13399-023-04687-8/FIGURES/7
  • Pourmoghadasiyan B, Tavakkoli F, Beram FM, et al. Nanosized paclitaxel-loaded niosomes: formulation, in vitro cytotoxicity, and apoptosis gene expression in breast cancer cell lines. Mol Biol Rep. 2022;49:3597–3608. doi:10.1007/s11033-022-07199-2
  • Hassanin I, Elzoghby A. Resistance, undefined 2020, Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance, Ncbi.Nlm.Nih.GovI Hassanin, A ElzoghbyCancer Drug Resistance, 2020•ncbi.Nlm.Nih.Gov (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992568/ (accessed December 19, 2023).
  • Vaz J, Ansari D, Sasor A, et al. SPARC: A potential prognostic and therapeutic target in pancreatic cancer, Pancreas, 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568900/ (accessed December 19, 2023).
  • F.K.-J. of controlled release, undefined 2014, A clinical update of using albumin as a drug vehicle—A commentary, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S0168365914001473 (accessed December 19, 2023).
  • Bigham A, Aghajanian A. undefined 2019, Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S092849311833515X (accessed December 19, 2023).
  • Sharifi E, Bigham A, Yousefiasl S, et al. Mesoporous bioactive glasses in cancer diagnosis and therapy: stimuli-responsive, toxicity, immunogenicity, and clinical translation. Wiley Online Library. 2021;9; doi:10.1002/advs.202102678
  • Jafari Z, Bigham A, Sadeghi S, et al. Nanotechnology-Abetted astaxanthin formulations in multimodel therapeutic and biomedical applications. J Med Chem. 2022;65:2–36. doi:10.1021/ACS.JMEDCHEM.1C01144
  • Mendes R, Pedrosa P, Lima J. undefined 2017, Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, Scientific Reports, 2017•nature.Com (n.d.). https://www.nature.com/articles/s41598-017-11491-8 (accessed December 19, 2023).
  • Kumari S, Sharma N, Sahi SV, et al. Advances in cancer therapeutics: conventional thermal therapy to nanotechnology-based photothermal therapy. Pharmaceutics. 2021. doi:10.3390/pharmaceutics13081174
  • Doughty ACV, Hoover AR, Layton E, et al. Nanomaterial applications in photothermal therapy for cancer. Materials (Basel). 2019. doi:10.3390/ma12050779
  • Johari B, Rahmati M, Nasehi L, et al. Evaluation of STAT3 decoy oligodeoxynucleotides’ synergistic effects on radiation and/or chemotherapy in metastatic breast cancer cell line. Cell Biol Int. 2020;44:2499–2511. doi:10.1002/cbin.11456
  • Johari B, Parvinzad Leilan M, Gharbavi M, et al. Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells. Oncol Res. 2024;32:309), doi:10.32604/or.2023.043576
  • Kalındemirtaş FD, Kariper İA, Sert E, et al. The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicol in Vitro. 2022;84:105435), doi:10.1016/j.tiv.2022.105435
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4
  • Hong JF, Song YF, Liu Z, et al. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep. 2016;13:4541–4548. doi:10.3892/mmr.2016.5105
  • Wallberg F, Tenev T, Meier P. Analysis of apoptosis and necroptosis by fluorescence-activated cell sorting. Cold Spring Harb Protoc. 2016. doi:10.1101/PDB.PROT087387
  • Sibuh BZ, Kumar Gupta P, Taneja P, et al. Synthesis, in silico study, and anti-cancer activity of thiosemicarbazone derivatives. Biomedicines. 2021: 1375), doi:10.3390/biomedicines9101375
  • Wen Z, Liu F, Liu G, et al. undefined 2021, Assembly of multifunction dyes and heat shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S002197972100062X (accessed December 19, 2023).
  • Zhao W, Li T, Long Y, et al. Self-promoted albumin-based nanoparticles for combination therapy against metastatic breast cancer via a hyperthermia-induced “platelet bridge,”. ACS Appl Mater Interfaces. 2021;13:25701–25714. doi:10.1021/acsami.1c04442
  • Wang D, Li H, Chen W, et al. undefined 2021, Efficient tumor-targeting delivery of siRNA via folate-receptor mediated biomimetic albumin nanoparticles enhanced by all-trans retinoic acid, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S0928493120335013 (accessed December 20, 2023).
  • Peer D, Karp JM, Hong S, et al. Nano-Enabled medical applications. Nano-Enabled Medical Applications. 2020: 61–91. doi:10.1201/9780429399039-2
  • Spada A, Emami J, Tuszynski JA, et al. The uniqueness of albumin as a carrier in nanodrug delivery. Mol Pharm. 2021;18:1862–1894. doi:10.1021/acs.molpharmaceut.1c00046
  • Bhushan B, Dubey P, Kumar S, et al. undefined 2015, Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy, Pubs.Rsc.OrgB Bhushan, P Dubey, SU Kumar, A Sachdev, I Matai, P GopinathRSC Advances, 2015•pubs.Rsc.Org (n.d.). https://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra15233f (accessed December 19, 2023).
  • Sripriyalakshmi S, Jose P, Ravindran A, et al. Recent trends in drug delivery system using protein nanoparticles. Cell Biochem Biophys. 2014;70:17–26. doi:10.1007/s12013-014-9896-5
  • Cui M, Naczynski DJ, Zevon M, et al. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthcare Mater, 2013;2:1236–1245. doi:10.1002/adhm.201200467.
  • Zawisza K, Sobierajska P, Nowak N, et al. undefined 2020, Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S092849311832616X (accessed December 20, 2023).
  • Jiao C, Zhang SS, Li ZY, et al. Syntheses and structures of discrete copper(II) and cadmium(II) supramolecular complexes based on 1,4-diacylthiosemicarbazone ligands. Acta Crystallogr C Struct Chem. 2016;72:119–123. doi:10.1107/S2053229616000310
  • Hricovíni M, Mazúr M, Sîrbu A, et al. Molecules, undefined 2018, Copper (II) thiosemicarbazone complexes and their proligands upon uva irradiation: An epr and spectrophotometric steady-state study, Mdpi.ComM Hricovíni, M Mazúr, A Sîrbu, O Palamarciuc, VB Arion, V BrezováMolecules, 2018•mdpi.Com (n.d.). https://www.mdpi.com/1420-3049/23/4/721 (accessed December 19, 2023).
  • D Polo-CeronBioinorganic. Chemistry and applications, undefined 2019, Cu (II) and Ni (II) complexes with new tridentate NNS thiosemicarbazones: Synthesis, characterisation, DNA interaction, and antibacterial activity, Hindawi.Com Chemistry and Applications, 2019•hindawi.Com (n.d.). https://www.hindawi.com/journals/bca/2019/3520837/ (accessed December 19, 2023).
  • Zhao P, Yin W, Wu A, et al. Dual-Targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy, Wiley Online Library 27 2017. doi:10.1002/adfm.201700403.
  • Buss J, Torti F, Torti SV. Current medicinal chemistry, undefined 2003, The role of iron chelation in cancer therapy, Ingentaconnect.Com Current Medicinal Chemistry, 2003•ingentaconnect.Com (n.d.). https://www.ingentaconnect.com/content/ben/cmc/2003/00000010/00000012/art00005 (accessed December 19, 2023).
  • Yen Y, Margolin K, Doroshow J, et al. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother Pharmacol. 2004;54:331–342. doi:10.1007/S00280-004-0821-2
  • Wadler S, Makower D, Clainmont C, et al. Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J Clin Oncol. 2004;22:1553–1563. doi:10.1200/JCO.2004.07.158
  • Kalinowski D. D.R.-P. reviews, undefined 2005, The evolution of iron chelators for the treatment of iron overload disease and cancer, ASPETDS Kalinowski, DR RichardsonPharmacological Reviews, 2005•ASPET (n.d.). https://pharmrev.aspetjournals.org/content/57/4/547.short (accessed December 19, 2023).
  • Merlot A, Sahni S, Lane D. A.F.- Oncotarget, undefined 2015, Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by, Ncbi.Nlm.Nih.GovAM Merlot, S Sahni, DJR Lane, AM Fordham, N Pantarat, DE Hibbs, V RichardsonOncotarget, 2015•ncbi.Nlm.Nih.Gov (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496362/ (accessed December 19, 2023).
  • Yang F, Liang H. Designing anticancer multitarget metal thiosemicarbazone prodrug based on the nature of binding sites of human serum albumin carrier. Future Med Chem. 2018;10:1881–1883. doi:10.4155/fmc-2018-0175
  • Lian H, Wu J, Hu Y, et al. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int J Nanomedicine. 2017;Volume 12:7777–7787. doi:10.2147/IJN.S144634
  • Li C, Wang X, Song H, et al. Current multifunctional albumin-based nanoplatforms for cancer multi-mode therapy. Asian J Pharm Sci. 2020;15:1–12. doi:10.1016/j.ajps.2018.12.006
  • Zhang Z, Zhang J, Jiang M, et al. Human serum albumin-based dual-agent delivery systems for combination therapy: acting against cancer cells and inhibiting neovascularization in the tumor microenvironment. Mol Pharm. 2020;17:1405–1414. doi:10.1021/acs.molpharmaceut.0c00133
  • Battogtokh G, Gotov O, Kang JH, et al. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine. 2018;13:325–338. doi:10.2217/nnm-2017-0274
  • Khella K, El Maksoud AA. Molecules, undefined 2022, Carnosic acid encapsulated in albumin nanoparticles induces apoptosis in breast and colorectal cancer cells, Mdpi.ComKF Khella, AI Abd El Maksoud, A Hassan, SE Abdel-Ghany, RM Elsanhoty, MA AladhadhMolecules, 2022•mdpi.Com (n.d.). https://www.mdpi.com/1420-3049/27/13/4102 (accessed December 19, 2023).
  • Yurt F, Özel D, Tunçel A, et al. Synthesis and optimization of the docetaxel-loaded and durvalumab-targeted human serum albumin nanoparticles, In vitro characterization on triple-negative breast cancer cells. ACS Omega. 2023;8:26287–26300. doi:10.1021/ACSOMEGA.3C02682
  • Zhang Z, Yang T, Zhang J, et al. Developing a novel indium(III) agent based on human serum albumin nanoparticles: integrating bioimaging and therapy. J Med Chem. 2022;65:5392–5406. doi:10.1021/acs.jmedchem.1c01790