1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New imidazole-Schiff base compounds for environmentally friendly anticorrosion protection in industrial pickling of mild steel

, , , , , , , , & show all
Article: 2377305 | Received 14 Sep 2023, Accepted 03 Jul 2024, Published online: 18 Jul 2024

References

  • Haque J, Zulkifli MFR, Ismail N, et al. Environmentally benign water-soluble sodium L-2-(1-imidazolyl) alkanoic acids as new corrosion inhibitors for mild steel in artificial seawater. ACS Omega. 2023;8:24797–24812. doi:10.1021/acsomega.3c00366
  • Jafari H, Danaee I, Eskandari H, et al. Electrochemical and theoretical studies of adsorption and corrosion inhibition of N,N′-Bis(2-hydroxyethoxyacetophenone)-2,2-dimethyl-1,2-propanediimine on low carbon steel (API 5L Grade B) in acidic solution. Ind Eng Chem Res. 2013;52:6617–6632. doi:10.1021/ie400066x
  • Ikhmal W, Maria MFM, Rafizah WAW, et al. Corrosion inhibition of mild steel in seawater through green approach using Leucaena leucocephala leaves extract. Int J Corros Scale Inhib. 2019;8:628–643.
  • Haque J, Srivastava V, Chauhan DS, et al. Microwave-induced synthesis of chitosan Schiff bases and their application as novel and green corrosion inhibitors. experimental and theoretical approach. ACS Omega. 2018;3:5654–5668. doi:10.1021/acsomega.8b00455
  • Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, et al. Anticorrosive and microbial inhibition performance of a coating loaded with Andrographis paniculata on stainless steel in seawater. Molecules. 2021;26:3379. doi:10.3390/molecules26113379
  • Ikhmal WMKWM, Yasmin MYN, Fazira MFM, et al. Anticorrosion coating using Olea sp. leaves extract. IOP Conf Ser Mater Sci Eng. 2018;344:012028. doi:10.1088/1757-899X/344/1/012028
  • Hajjaji FE, Salim R, Taleb M, et al. Pyridinium-based ionic liquids as novel eco-friendly corrosion inhibitors for mild steel in molar hydrochloric acid. Exp Comput Approach Surf Interf. 2021;22:100881. doi:10.1016/j.surfin.2020.100881
  • Wan Nik WB, Zulkifli MF, Rosliza R, et al. Potential of honey as corrosion inhibitor for alluminium alloy in seawater. World Appl Sci J. 2011;14:215–220.
  • Jafari H, Ameri E, Vakili MH, et al. Effect of OH position on adsorption behavior of Schiff-base derivatives in corrosion inhibition of carbon steel in 1 M HCl. Electrochem Commun. 2024;159:107653. doi:10.1016/j.elecom.2023.107653
  • Dahan-Farkas N, Langley C, Rousseau AL, et al. 6-Substituted imidazo[1,2-a]pyridines: synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur J Med Chem. 2011;46:4573–4583. doi:10.1016/j.ejmech.2011.07.036
  • Feng D, Fisher M, Liang G-B, et al. Synthesis and SAR of 2-(4-fluorophenyl)-3-pyrimidin-4-ylimidazo[1,2-a]pyridine derivatives as anticoccidial agents. Bioorg Med Chem Lett. 2006;16:5978–5981. doi:10.1016/j.bmcl.2006.08.127
  • Ulloora S, Shabaraya R, Aamir S, et al. New imidazo[1,2-a]pyridines carrying active pharmacophores: Synthesis and anticonvulsant studies. Bioorg Med Chem Lett. 2013;23:1502–1506. doi:10.1016/j.bmcl.2012.12.035
  • Kaplancikli ZA, Turan-Zitouni G, Özdemr A, et al. Synthesis and anticandidal activity of some imidazopyridine derivatives. J Enzyme Inhib Med Chem. 2008;23:866–870. doi:10.1080/14756360701811114
  • Chen G, Liu Z, Zhang Y, et al. Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med Chem Lett. 2013;4:69–74. doi:10.1021/ml300282t
  • Al-Tel TH, Al-Qawasmeh RA, Zaarour R. Design, synthesis and in vitro antimicrobial evaluation of novel imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem. 2011;46:1874–1881. doi:10.1016/j.ejmech.2011.02.051
  • Gudmundsson KS, Williams JD, Drach JC, et al. Synthesis and antiviral activity of novel erythrofuranosyl Imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. J Med Chem. 2003;46:1449–1455. doi:10.1021/jm020339r
  • Antimalarial benzimidazoles and related structures incorporating an intramolecular hydrogen bonding motif: medicinal chemistry and mechanistic studies; n.d. [cited 2023 November 7]. Available from: https://open.uct.ac.za/items/f724c9f3-ee13-4d14-b05f-574aaaa4cfcf.
  • Jackson JL, Louwerens JW, Cnossen F, et al. Testing the effects of the imidazopyridine zolpidem on memory: an ecologically valid approach. Human Psychopharm Clin Exp. 1992;7:325–330. doi:10.1002/hup.470070505
  • Hamani H, Douadi T, Daoud D, et al. 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J Electroanal Chem. 2017;801:425–438. doi:10.1016/j.jelechem.2017.08.031
  • Rbaa M, Ouakki M, Galai M, et al. Simple preparation and characterization of novel 8-hydroxyquinoline derivatives as effective acid corrosion inhibitor for mild steel: experimental and theoretical studies. Colloids Surf A Physicochem Eng Asp. 2020;602:125094. doi:10.1016/j.colsurfa.2020.125094
  • Benhiba F, Serrar H, Hsissou R, et al. Tetrahydropyrimido-triazepine derivatives as anti-corrosion additives for acid corrosion: chemical, electrochemical, surface and theoretical studies. Chem Phys Lett. 2020;743:137181. doi:10.1016/j.cplett.2020.137181
  • Sprung MA. A summary of the reactions of aldehydes with amines. Chem Rev. 1940;26:297–338. doi:10.1021/cr60085a001
  • Daoudi W, Guo L, Azzouzi M, et al. Evaluation of the corrosion inhibition of mild steel by newly synthesized imidazo[1,2-a]pyridine derivatives: experimental and theoretical investigation. J Adhes Sci Technol. 2023;0:1–24. doi:10.1080/01694243.2023.2175296
  • Daoudi W, Azzouzi M, Dagdag O, et al. Synthesis, characterization, and corrosion inhibition activity of new imidazo[1.2-a]pyridine chalcones. Mater Sci Eng: B. 2023;290:116287. doi:10.1016/j.mseb.2023.116287
  • Lamghafri S, Daoudi W, El Aatiaoui A, et al. Comparative study of the performance and inhibitory efficiency of two new organic heterocyclic in the chemical industry. Mater Sci Eng B. 2023;297:116779. doi:10.1016/j.mseb.2023.116779
  • Al-Amiery AA, Betti N, Isahak WNRW, et al. Exploring the effectiveness of Isatin–Schiff base as an environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid. Lubricants. 2023;11:211. doi:10.3390/lubricants11050211
  • Shenoy KV, Venugopal PP, Reena Kumari PD, et al. Anti-corrosion investigation of a new nitro veratraldehyde substituted imidazopyridine derivative Schiff base on mild steel surface in hydrochloric acid medium: experimental, computational, surface morphological analysis. Mater Chem Phys. 2022;281:125855. doi:10.1016/j.matchemphys.2022.125855
  • Daoudi W, Ibrahimi BE, Dagdag O, et al. New chlorophenyl-imidazole derivative as a novel corrosion inhibitor in the gas and oil industry. J Phys Chem Solids. 2023;179:111409. doi:10.1016/j.jpcs.2023.111409
  • Zhou X, Zhou W, Zhang YZ, et al. Experimental and computational study of imidazole-pyridine and its derivatives as corrosion inhibitors on brass in sulfuric acid solution. Anti-Corrosion Methods Mater. 2023;70:402–417. doi:10.1108/ACMM-06-2023-2819
  • Sheetal, Sengupta S, Singh M, et al. An insight about the interaction of aryl benzothiazoles with mild steel surface in aqueous HCl solution. J Mol Liq. 2022;354:118890. doi:10.1016/j.molliq.2022.118890
  • Chugh B, Singh AK, Poddar D, et al. Relation of degree of substitution and metal protecting ability of cinnamaldehyde modified chitosan. Carbohydr Polym. 2020;234:115945. doi:10.1016/j.carbpol.2020.115945
  • Sprung MA. A summary of the reactions of aldehydes with amines. ACS Publications; 2002. doi:10.1021/cr60085a001
  • Neese F. The ORCA program system. Wires Comput Mol Sci. 2012;2:73. doi:10.1002/wcms.81
  • S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787. doi:10.1002/jcc.20495
  • Chaouiki A, Han D, Ko YG. Computational molecular-level prediction of heterocyclic compound–metal surface interfacial behavior. J Colloid Interface Sci. 2022;622:452–468. doi:10.1016/j.jcis.2022.04.106
  • Guo L, Qi C, Zheng X, et al. Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method. RSC Adv. 2017;7:29042–29050. doi:10.1039/C7RA04120A
  • Murmu M, Saha SK, Murmu NC, et al. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corros Sci. 2019;146:134–151. doi:10.1016/j.corsci.2018.10.002
  • Chaouiki A, Al Zoubi W, Ko YG. Advanced prediction of organic–metal interactions through DFT study and electrochemical displacement approach. J Magnesium Alloys. 2023;11:301–316. doi:10.1016/j.jma.2022.04.005
  • Jafari H, Ameri E, Rezaeivala M, et al. Comparison the anticorrosion behavior of three symmetrical Schiff-base ligands: experimental and theoretical studies. J Appl Electrochem. 2022;52:1803–1818. doi:10.1007/s10800-022-01748-0
  • Kaya F, Solmaz R, Geçibesler İH. Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution. J Taiwan Inst Chem Eng. 2023;143:104712. doi:10.1016/j.jtice.2023.104712
  • Kaya F, Solmaz R, Halil Geçibesler İ. The use of methanol extract of Rheum ribes (Işgın) flower as a natural and promising corrosion inhibitor for mild steel protection in 1 M HCl solution. J Ind Eng Chem. 2023;122:102–117. doi:10.1016/j.jiec.2023.02.013
  • Saady A, Ech-chihbi E, El-Hajjaji F, et al. Molecular dynamics, DFT and electrochemical to study the interfacial adsorption behavior of new imidazo[4,5-b] pyridine derivative as corrosion inhibitor in acid medium. J Appl Electrochem. 2021;51:245–265. doi:10.1007/s10800-020-01498-x
  • Kaya F, Solmaz R, Geçibesler İH. Adsorption and corrosion inhibition capability of Rheum ribes root extract (Işgın) for mild steel protection in acidic medium: a comprehensive electrochemical, surface characterization, synergistic inhibition effect, and stability study. J Mol Liq. 2023;372:121219. doi:10.1016/j.molliq.2023.121219
  • Lin B, Zhou X, Duan T, et al. Experimental and theoretical study on corrosion inhibition and adsorption performance of Ipomoea batatas L. leaf extract for mild steel. Arabian J Chem. 2024;17:105410. doi:10.1016/j.arabjc.2023.105410
  • Berdimurodov E, Kholikov A, Akbarov K, et al. Novel cucurbit[6]uril-based [3]rotaxane supramolecular ionic liquid as a green and excellent corrosion inhibitor for the chemical industry. Colloids Surf A Physicochem Eng Asp. 2022;633:127837. doi:10.1016/j.colsurfa.2021.127837
  • Umoren SA, Suleiman RK, Obot IB, et al. Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solution. Experimental and theoretical approaches. J Mol Liq. 2022;356:119002. doi:10.1016/j.molliq.2022.119002
  • Jafari H, Ameri E, Rezaeivala M, et al. Anti-corrosion behavior of two N2O4 Schiff-base ligands: experimental and theoretical studies. J Phys Chem Solids. 2022;164:110645. doi:10.1016/j.jpcs.2022.110645
  • Alibakhshi E, Ramezanzadeh M, Bahlakeh G, et al. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics. Monte Carlo and quantum mechanics study. J Mol Liq. 2018;255:185–198. doi:10.1016/j.molliq.2018.01.144
  • Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: electrochemical and theoretical studies. J Mol Liq. 2019;277:895–911. doi:10.1016/j.molliq.2019.01.008
  • Wang Q, Liu L, Zhang Q, et al. Insight into the anti-corrosion performance of Artemisia argyi leaves extract as eco-friendly corrosion inhibitor for carbon steel in HCl medium. Sustain Chem Pharm. 2022;27:100710. doi:10.1016/j.scp.2022.100710
  • Wang Q, Tan B, Bao H, et al. Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry. 2019;128:49–55. doi:10.1016/j.bioelechem.2019.03.001
  • Solmaz R. Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5M HCl solution. Corros Sci. 2014;81:75–84. doi:10.1016/j.corsci.2013.12.006
  • Soltani N, Tavakkoli N, Khayatkashani M, et al. Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves. Corros Sci. 2012;62:122–135. doi:10.1016/j.corsci.2012.05.003
  • Policarpi EdB, Spinelli A. Application of Hymenaea stigonocarpa fruit shell extract as eco-friendly corrosion inhibitor for steel in sulfuric acid. J Taiwan Instit Chem Eng. 2020;116:215–222. doi:10.1016/j.jtice.2020.10.024
  • Zhang D, Tang Y, Qi S, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl. Corros Sci. 2016;102:517–522. doi:10.1016/j.corsci.2015.10.002
  • Nabatipour S, Mohammadi S, Mohammadi A. Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid. J Mol Struct. 2020;1217:128367. doi:10.1016/j.molstruc.2020.128367
  • Jafari H, Danaee I, Eskandari H, et al. Combined computational and experimental study on the adsorption and inhibition effects of N2O2 Schiff base on the corrosion of API 5L grade B steel in 1 mol/L HCl. J Mater Sci Technol. 2014;30:239–252. doi:10.1016/j.jmst.2014.01.003
  • Chaouiki A, Lgaz H, Salghi R, et al. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: experimental results and molecular-level insights. Colloids Surf A Physicochem Eng Asp. 2020;588:124366. doi:10.1016/j.colsurfa.2019.124366
  • Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim Acta. 1990;35:1501–1508. doi:10.1016/0013-4686(90)80004-8
  • Ali AI, Mahrous YS. Corrosion inhibition of C-steel in acidic media from fruiting bodies of Melia azedarach L extract and a synergistic Ni2+ additive. RSC Adv. 2017;7:23687–23698. doi:10.1039/C7RA00111H
  • Hermoso-Diaz IA, Lopez-Cecenes R, Flores-De los Rios JP, et al. Experimental and theoretical studies of α-linolenic acid as green corrosion inhibitor for carbon steel in 0.5 M sulfuric acid. Molecules. 2021;26:6169. doi:10.3390/molecules26206169
  • Lgaz H, Salghi R, Jodeh S, et al. Effect of clozapine on inhibition of mild steel corrosion in 1.0M HCl medium. J Mol Liq. 2017;225:271–280. doi:10.1016/j.molliq.2016.11.039
  • Singh AK, Chugh B, Singh M, et al. Hydroxy phenyl hydrazides and their role as corrosion impeding agent: a detail experimental and theoretical study. J Mol Liq. 2021;330:115605. doi:10.1016/j.molliq.2021.115605
  • Singh AK, Chugh B, Thakur S, et al. Green approach of synthesis of thiazolyl imines and their impeding behavior against corrosion of mild steel in acid medium. Colloids Surf A Physicochem Eng Asp. 2020;599:124824. doi:10.1016/j.colsurfa.2020.124824
  • Singh AK, Singh M, Thakur S, et al. Adsorption study of N (-benzo[d]thiazol-2-yl)-1-(thiophene-2-yl) methanimine at mild steel/aqueous H2SO4 interface. Surf Interf. 2022;33:102169. doi:10.1016/j.surfin.2022.102169
  • Chugh B, Singh AK, Thakur S, et al. Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-Schiff bases for mild steel in acid medium: experimental, theoretical, and surface study. ACS Omega. 2020;5:13503–13520. doi:10.1021/acsomega.9b04274
  • Arshad N, Singh AK, Chugh B, et al. Experimental, theoretical, and surface study for corrosion inhibition of mild steel in 1 M HCl by using synthetic anti-biotic derivatives. Ionics. 2019;25:5057–5075. doi:10.1007/s11581-019-03028-y
  • Al-Amiery AA, Al-Azzawi WK, Isahak WNRW. Isatin Schiff base is an effective corrosion inhibitor for mild steel in hydrochloric acid solution: gravimetrical, electrochemical, and computational investigation. Sci Rep. 2022;12:17773. doi:10.1038/s41598-022-22611-4
  • Betti N, Al-Amiery AA, Al-Azzawi WK, et al. Corrosion inhibition properties of Schiff base derivative against mild steel in HCl environment complemented with DFT investigations. Sci Rep. 2023;13:8979. doi:10.1038/s41598-023-36064-w
  • Saha SK, Dutta A, Ghosh P, et al. Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys Chem Chem Phys. 2015;17:5679–5690. doi:10.1039/C4CP05614K
  • Saha SK, Dutta A, Ghosh P, et al. Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys Chem Chem Phys. 2016;18:17898–17911. doi:10.1039/C6CP01993E
  • El Aatiaoui A, Daoudi W, El Boutaybi A, et al. Synthesis and anticorrosive activity of two new imidazo[1, 2-a]pyridine Schiff bases. J Mol Liq. 2022;350:118458. doi:10.1016/j.molliq.2021.118458
  • Ouakki M, Galai M, Benzekri Z, et al. A detailed investigation on the corrosion inhibition effect of by newly synthesized pyran derivative on mild steel in 1.0 M HCl: experimental, surface morphological (SEM-EDS, DRX&. AFM) and computational analysis (DFT & MD simulation). J Mol Liq. 2021;344:117777. doi:10.1016/j.molliq.2021.117777
  • Kliškic´ M, Radoševic´ J, Gudic´ S. Pyridine and its derivatives as inhibitors of aluminium corrosion in chloride solution. J Appl Electrochem. 1997;27:947–952. doi:10.1023/A:1018405803182
  • Tan B, Xiang B, Zhang S, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J Colloid Interface Sci. 2021;582:918–931. doi:10.1016/j.jcis.2020.08.093
  • Bahlakeh G, Ramezanzadeh B, Dehghani A, et al. Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: detailed experimental and electronic/atomic level computational explorations. J Mol Liq. 2019;283:174–195. doi:10.1016/j.molliq.2019.03.086
  • Ramezanzadeh M, Bahlakeh G, Sanaei Z, et al. Corrosion inhibition of mild steel in 1–M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: electrochemical, molecular dynamics, Monte Carlo and ab initio study. Appl Surf Sci. 2019;463:1058–1077. doi:10.1016/j.apsusc.2018.09.029
  • Goulart CM, Esteves-Souza A, Martinez-Huitle CA, et al. Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros Sci. 2013;67:281–291. doi:10.1016/j.corsci.2012.10.029
  • Jafari H, Ameri E, Vakili MH, et al. Novel silicon-based Schiff-base as corrosion inhibitor for anti-corrosion behavior of API 5L grade B in 1M HCl. Mater Chem Phys. 2024;311:128499. doi:10.1016/j.matchemphys.2023.128499
  • Fekry AM, Mohamed RR. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim Acta. 2010;55:1933–1939. doi:10.1016/j.electacta.2009.11.011
  • Khadiri A, Saddik R, Bekkouche K, et al. Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. J Taiwan Instit Chem Eng. 2016;58:552–564. doi:10.1016/j.jtice.2015.06.031
  • Aljourani J, Raeissi K, Golozar MA. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros Sci. 2009;51:1836–1843. doi:10.1016/j.corsci.2009.05.011
  • Li X, Deng S, Lin T, et al. 2-mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution. Corros Sci. 2017;118:202–216. doi:10.1016/j.corsci.2017.02.011
  • Fouda AS, Ellithy AS. Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution. Corros Sci. 2009;51:868–875. doi:10.1016/j.corsci.2009.01.011
  • Behpour M, Ghoreishi SM, Khayatkashani M, et al. Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Mater Chem Phys. 2012;131:621–633. doi:10.1016/j.matchemphys.2011.10.027
  • Zarrouk A, Ouali IE, Bouachrine M, et al. Theoretical approach to the corrosion inhibition efficiency of some quinoxaline derivatives of steel in acid media using the DFT method. Res Chem Intermed. 2013;39:1125–1133. doi:10.1007/s11164-012-0671-1
  • Laabaissi T, Rbaa M, Benhiba F, et al. Insight into the corrosion inhibition of new benzodiazepine derivatives as highly efficient inhibitors for mild steel in 1 M HCl: experimental and theoretical study. Colloids Surf A Physicochem Eng Asp. 2021;629:127428. doi:10.1016/j.colsurfa.2021.127428
  • Umoren SA, Eduok UM. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: a review. Carbohydr Polym. 2016;140:314–341. doi:10.1016/j.carbpol.2015.12.038
  • Zheng X, Zhang S, Li W, et al. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corros Sci. 2015;95:168–179. doi:10.1016/j.corsci.2015.03.012
  • Singh DK, Ebenso EE, Singh MK, et al. Non-toxic Schiff bases as efficient corrosion inhibitors for mild steel in 1M HCl: electrochemical, AFM. FE-SEM and theoretical studies. J Mol Liq. 2018;250:88–99. doi:10.1016/j.molliq.2017.11.132
  • Singh P, Ebenso EE, Olasunkanmi LO, et al. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J Phys Chem C. 2016;120:3408–3419. doi:10.1021/acs.jpcc.5b11901
  • Zhang Y, Xu Q, Sun M, et al. Insights into vitamin B3, B6 and C as inhibitor of steel reinforcement: A DFT+ U study. Constr Build Mater. 2021;294:123571. doi:10.1016/j.conbuildmat.2021.123571
  • Mourya P, Singh P, Tewari AK, et al. Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corros Sci. 2015;95:71–87. doi:10.1016/j.corsci.2015.02.034
  • Sayin K, Karakaş D. Quantum chemical studies on the some inorganic corrosion inhibitors. Corros Sci. 2013;77:37–45. doi:10.1016/j.corsci.2013.07.023
  • Chaouiki A, Hazmatulhaq F, Han DI, et al. Predicting the interaction between organic layer and metal substrate through DFTB and electrochemical approach for excellent corrosion protection. J Ind Eng Chem. 2022;114:190–204. doi:10.1016/j.jiec.2022.07.009
  • Jafari H, Mohsenifar F, Sayin K. Corrosion inhibition studies of n,n'-bis(4-formylphenol)-1,2-diaminocyclohexane on steel in 1 HCl} solution acid. J Taiwan Instit Chem Eng. 2016;64:314–324. doi:10.1016/j.jtice.2016.04.021
  • Ahamad I, Prasad R, Quraishi MA. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros Sci. 2010;52:933–942. doi:10.1016/j.corsci.2009.11.016
  • Yadav DK, Chauhan DS, Ahamad I, et al. Electrochemical behavior of steel/acid interface: adsorption and inhibition effect of oligomeric aniline. RSC Adv. 2012;3:632–646. doi:10.1039/C2RA21697C
  • Rezaeivala M, Karimi S, Sayin K, et al. Experimental and theoretical investigation of corrosion inhibition effect of two piperazine-based ligands on carbon steel in acidic media. Colloids Surf A Physicochem Eng Asp. 2022;641:128538. doi:10.1016/j.colsurfa.2022.128538
  • Ferigita KSM, Saracoglu M, AlFalah MGK, et al. Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: experimental and theoretical insights. J Mol Struct. 2023;1284:135361. doi:10.1016/j.molstruc.2023.135361