225
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

SPC Procedures for Monitoring Autocorrelated Processes

&
Pages 501-540 | Received 01 Jun 2005, Accepted 01 Dec 2006, Published online: 09 Feb 2016

References

  • Alwan, L. C. and Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business & Economics Statistics, 6(1), 87–95.
  • Alwan, L. C. (1991). Autocorrelation: fixed versus variable control limits. Quality Engineering, 4(2), 167–188.
  • Alwan, L. C. (1992). Effects of autocorrelation on control chart performance. Communications in Statistics — Theory and Methods, 21(4), 1025–1049.
  • Alwan, A. J. and Alwan, L. C. (1994). Monitoring autocorrelated processes using multivariate quality control charts. Proceedings of the Decision Sciences Institute Annual Meeting, 3, 2106–2108.
  • Alwan, L. C., Champ, C. W. and Maragah, H. D. (1994). Study of average run lengths for supplementary runs rules in the presence of autocorrelation. Communications in Statistics — Simulation and Computation, 23(2), 373–391.
  • Amin, R. W., Schmid, W. and Frank, O. (1997). The effects of autocorrelation on the R-chart and the S2-chart. Sankhya ser. B, 59(3), 229–255.
  • Amin, R. W. and Lee, S. J. (1999). The effects of autocorrelation and outliers on two-sided tolerance limits. Journal of Quality Technology, 31(3), 286–300.
  • Amin, R. W. Wolff H., Besenfelder, W. and Baxley, Jr. R. (1999). An EWMA control chart for the smallest and largest observations. Journal of Quality Technology, 31(2), 189–206.
  • Amin, R. W. and Li, K. (2002). The effect of autocorrelation on the EWMA maxmin tolerance limits. Journal of Statistical Computation and Simulation, 72(9), 719–735.
  • Aoki, M. (1983). Notes on economic time series analysis: system theoretic approach. Heidelberg Germany Springer-Verlag
  • Apley, D. W. and Lee, H. C. (2003). Design of exponentially weighted moving average control charts for auocorrelated processes with model uncertainty. Technometrics, 45(3), 187–198.
  • Apley, D. W. and Shi, J. (1999). The GLRT for statistical process control of autocorrelated processes. IIE Transactions, 31(12), 1123–1134.
  • Apley, D. W. and Tsung, F. (2002). The autoregressive T2 chart for monitoring univariate autocorrelated processes. Journal of Quality Technology, 34(1), 80–96.
  • Aradhye, H. B., Bakshi, B. R., Strauss, R. A. and Davis, J. F. (2003). Multiscale SPC using wavelets: theoretical analysis and properties. AICHE Journal, 49(4), 939–958.
  • Atienza, O. O., Tang, L. C. and Ang, B. W. (1997). ARL properties of sample autocorrelation chart. Computers Ind. Eng., 33(3–4), 733–736.
  • Atienza, O. O., Tang, L. C. and Ang, B. W. (2002). A CUSUM scheme for autocorrelated observations. Journal of Quality Technology, 34(2), 187–199.
  • Bagshaw, M. and Johnson, R. A. (1975). The effect of serial correlation on the performance of CUSUM tests II. Technometrics, 17(1), 73–80.
  • Ben-Gal, I., Morag, G. and Shmilovici, A. (2003). Context-based statistical process control: a monitoring procedure for state-dependent processes. Technometrics, 45(4), 293–311.
  • Ben-Gal, I. and Singer, G. (2004). Statistical process control via context modeling of finite-state processes: an application to production monitoring. IIE Transactions, 36(5), 401–415.
  • Bhat, U. N. and Lal, R. (1990). Attribute control charts for Markov dependent production processes. IIE Trancactions, 22(2), 181–188.
  • Bishop, C. M. (1995). Neural networks for pattern recognition, Oxford. Oxford University Press.
  • Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time Series Analysis, Forecasting and Control, 3rd edition. Prentice Hall, Englewood Cliffs, N. J.
  • Box, G. E. P. and Luceno, A. (1997). Statistical Control by Monitoring and Feedback Adjustment. John Wiley & Sons, New York.
  • Boyles, R. A. (2000). Phase I analysis for autocorrelated processes. Journal of Quality Technology, 32(4), 395–409.
  • Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer-Verlag, New York.
  • Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations. Cambridge University Press.
  • Castagliola, P. and Tsung, F. (2005). Autocorrelated SPC for non-normal situations. Quality and Reliability Engineering International, 21(2), 131–161.
  • Chan, L. K. and Li, G. Y. (1994). A multivariate control chart for detecting linear trends. Communications in Statistics — Simulation and Computation, 23(4), 997–1012.
  • Charnes, J. M. (1995). Tests for special causes with multivariate autocorrelated data. Computers and Operational Research, 22(4), 443–453.
  • Chen, Y. K. and Chiu, K. C. (2005). Optimal design of VSI X control charts for monitoring correlated samples. Quality and Reliability Engineering International, 21(8), 757–768.
  • Cheng, S. W. and Thaga, K. (2005). Max-CUSUM chart for autocorrelated processes. Statistica Sinica, 15(2), 527–546.
  • Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40(17), 4449–4466.
  • Chiu, C. C., Chen, M. K. and Lee, K. R. (2001). Shift recognition in correlated process data using a neural network. International Journal of System Science, 32(2), 137–143.
  • Clayton, H. R., Harvey, M. M. and Prybutok, V. R. (1997). Simulation study for comparing fixed with variable sampling interval Shewhart X-bar control charts in the presence of undetected autocorrelated data. Simulation, 68(3), 164–174.
  • Cook, D. F. and Chiu, C. (1998). Using radial basis function neural networks to recognize shifts in correlated manufacturing parameters. IIE Transactions, 30(3), 227–234.
  • Cook, D. F. Zobel, C. W. and Nottingham, Q. J. (2001). Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research, 39(17), 3881–3887.
  • Crowder, S.V., Eshleman, L. (2001). Small sample properties of an adaptive filter applied to low volume SPC. Journal of Quality Technology, 33(1), 29–46.
  • Deligonul and Mergen (1987). Dependence bias in conventional p-charts and its correction with an appropriate lot quality distribution. Journal of Applied Statistics, 14(1), 75–81.
  • Desieno, D. (1988). Adding a conscience to competitive learning. Proceedings, International Joint Conference on Neural Networks, 1, 117–124.
  • Dooley, K. J. and Kapoor, S. G. (1990). An enhanced quality evaluation system for continuous manufacturing processes. Journal of Engineering for Industry_Transactions of the ASME, 112(1), 57–62.
  • Dyer, J. N., Adams, B. M. and Conerly, M. D. (2003). The reverse moving average control chart for monitoring autocorrelated processes. Journal of Quality Technology, 35 (2), 139–152.
  • Dyer, J. N., Conerly, M. D. and Adams, B. M. (2003). A simulation study and evaluation of multivariate forecast based control charts applied to ARMA processes. Journal of Statistical Computations and Simulation, 73(10), 709–724.
  • English, J. R. Lee, S. C. Martin,_T. W. and Tilmon, C. (2000). Detecting changes in autoregressive processes with X and EWMA charts. IIE Transactions, 32(12), 1103–1113.
  • English, J. R. and Alam, J. (2001). Modelling and process disturbance detection of autocorrelated data. Nonlinear Analysis, 47(3), 2103–2111.
  • Fong, D. Y. T. and Lawless, J. F. (1998). The analysis of process variation transmission with multivariate measurements. Statistica Sinica, 8(1), 151–164.
  • Hambourg, J. H., Booth, D. E. and Weinroth, G. J. (1996). A neural network approach to the detection of nuclear material losses. Journal of Chemical Information and Computer Sciences, 36(3), 544–553.
  • Han, D. and Tsung, F. (2005). Comparison of the cuscore, GLRT and CUSUM control charts for detecting dynamic mean change. Annals of the Institute of Statistical Mathematics, 57(3), 531–522.
  • Harris, T. J. and Ross, W. H. (1991). Statistical process control procedures for correlated observations. Canadian Journal of Chemical Engineering, 69(1), 48–57.
  • Harvey, A. C. and Fernandes, C. (1989). Time series modeling for count or correlated observations. Journal of Business and Economic Statistics, 7(4), 407–422.
  • Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. Macmillan, New York, NY.
  • Henderson, G. R. (2001). EWMA and industrial applications to feedback adjustment and control. Journal of Applied Statistics, 28 (3–4), 399–407.
  • Hotelling, H. (1947). Multivariate quality control — illustrated by the air testing of sample bombsights. Techniques of Statistical Analysis, Eisenhart, C., Hastay, M. W., Wallis, W. A. (eds), New York: MacGraw-Hill, 111–184.
  • Hwarng, H. B. (2004). Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme. International Journal of Production Research, 42(3), 573–595.
  • Hwarng, H. B. (2005). Simultaneous detection of mean shift and correlation change in AR(1) processes. International Journal of Production Research, 43 (9), 1761–1783.
  • Jackson, J. E. (1991). A User Guide to Principal Components. John Wiley: New York 1991.
  • Jiang, W., Tsui, K. L. and Woodall, W. H. (2000). A new SPC monitoring method: The ARMA chart. Technometrics, 42(4), 399–410.
  • Jiang, W. (2001). Average run length computation of ARMA charts for stationary processes. Communications in Statistics — Simulation and Computation, 30(3), 699–716.
  • Jiang, W. and Tsui, K. L. (2001). Some properties of the ARMA control chart. Nonlinear Analysis, 47(3), 2073–2088.
  • Jiang, W. Wu, H., Tsung, F., Nair, V. N. and Tsui, K.-L. (2002). Proportional integraql derivative charts for process monitoring. Technometrics, 44 (3), 205–214.
  • Jiang, W. (2004). Multivariate control charts for monitoring autocorrelated processes. Journal of Quality Technology, 36(4), 367–379.
  • Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36 (1–2), 149–176.
  • Johnson, R. A. and Bagshaw, M. (1974). The effect of serial correlation on the performance of CUSUM tests. Technometrics,16 (1), 103–112.
  • Kalgonda, A. A. and Kulkarni, S. R. (2004). Multivariate quality control chart for autocorrelated processes. Journal of Applied Statistics, 31 (3), 317–327.
  • Knoth, S. and Amin, R. W. (2003). Autocorrelation and tolerance limits. Journal of Statistical Computation and Simulation, 73(7), 719–735.
  • Knoth, S. and Schmid, W. (2004). Control charts for time series: a review. Frontiers in Statistical Quality Control V.6. Lenz, H.-J. and Wilrich, P.-Th. (Eds.), 7. Physica-Verlag, Heidelburg.
  • Kourti, T. (2003). Multivariate dynamic modelling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93–109.
  • Kramer, H. and Schmid, W. (1997). Control charts for time series. Nonlinear Analysis, 30(7), 4007–4016.
  • Ku, W., Storer, R. H. and Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(1), 179–196.
  • Lai, C. D., Govindaraju, K. and Xie, M. (1998). Effects of correlation on fraction non-conforming statistical process control procedures. Journal of Applied Statistics, 25 (4), 535–543.
  • Lai, C. D., Govindaraju, K. and Xie, M. (2000). Study of a Markov model for a high quality dependent process. Journal of Applied Statistics, 27(4), 461–473.
  • Lieftucht, D., Kruger, U., Xie, L., Littler, T., Chen, Q. and Wang, S. (2006). Statistical monitoring of dynamic multivariate processes-part 2. Identifying fault magnitude and signature. International Engineering Chemistry Research, 45(5), 1677–1688.
  • Lina, W. K., Woodall, H. W. and Busby, L. K. (2001). The performance of multivariate control charts in the presence of measurement error. Journal of Quality Technology, 33 (3), 349–355.
  • Liu, H. R. Chou, C. Y. and Chen, C. H. (2003). The effect of correlation on the economic design of warning limit X-bar charts. International Journal of Advanced Manufacturing Technology, 22(3–4), 306–312.
  • Longnecker, M. T. and Ryan, T. P. (1991). A Deficiency for Residuals Charts for Correlated Data. Technical Report, 166. Texas A&M University, Department of Statistics.
  • Longnecker, M. T. and Ryan, T. P. (1992). Charting Correlated Process Data. Technical Report, No.166. Texas A&M University, Department of Statistics.
  • Loredo, E. N., Jearkpaporn, D. and Borror, C. M. (2002). Model based control chart for autoregressive and correlated data. Quality and Reliability Engineering International, 18(6), 489–496.
  • Low, C., Hsu, C. M. and Yu, F. J. (2003). Analysis of variations in a multi-variate process using neural networks. International Journal of Advanced Manufacturing Technology, 22(11–12), 911–921.
  • Lu, C. W. and Reynolds, M. R. Jr. (1999a). EWMA control charts for monitoring the mean of autocorrelated processes. Journal of Quality Technology, 31(2), 166–188.
  • Lu, C. W. and Reynolds, M. R. Jr. (1999b). Control charts for monitoring the mean and the variance of autocorrelated processes. Journal of Quality Technology, 31(3), 259–274.
  • Lu, C. W. and Reynolds, M. R. Jr. (2001). CUSUM Charts for Monitoring an Autocorrelated Process. Journal of Quality Technology, 33(3), 316–334.
  • Luceno, A. and Box, G. P. (2000). Influence of the sampling interval, decision limit and autocorrelation on the average run length in CUSUM charts. Journal of Applied Statistics, 27(2), 177–183.
  • MacGregor, J. F. and Harris, T. J. (1993). The exponentially weighted moving variance. Journal of Quality Technology, 25(2), 106–118.
  • Mahmoud, M. A. and Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications. Technometrics, 46(4), 380–391.
  • Mason, R. L., Tracy, N. D. and Young, J. C. (1996). Monitoring a multivariate step process. Journal of Quality Technology, 28(1), 39–50.
  • Mason, R. L., Chou, Y. M., Sullivan, J. H. Stoumbos, Z. G. and Young, J. C. (2003). Systematic Patterns in T2 charts. Journal of Quality Technology, 35(1), 47–58.
  • Mastrangelo, C. M. and Forrest, D. R. (2002). Multivariate autocorrelated processes: Data and shift generation. Journal of Quality Technology, 34(2), 216–220.
  • Mastrangelo, C. M. and Montgomery, D. C. (1995). SPC with correlated observations for the chemical and process industries. International Journal of Reliability, Quality and Safety Engineering, 11 (2), 79–89.
  • Mastrangelo, M. C., Runger, G. C. and Montgomery, D. C. (1996). Statistical process monitoring with principal components. Quality and Reliability Engineering International, 12(3), 203–210.
  • Moguerza, J. M. and Munoz, A. (2006). Support vector machines with applications. Statistical Science, 21(3), 322–336.
  • Montgomery, D. C. and Mastrangelo, C. M. (1991). Some statistical process control methods for autocorrelated data. Journal of Quality Technology, 23(3), 179–204.
  • Montgomery, D. C. (2001). Introduction to Statistical Quality Control. John Wiley & Sons, New York.
  • Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation,1, 281–293.
  • Noorossana, R., Farrokhi, M. and Saghaei, A. (2003). Using neural networks to detect and classify out-of control signals in autocorrelated processes. Quality and Reliability Engineering International, 19(6), 493–504.
  • Nembhard, H. B. (1998). Simulation using state-space representation of noisy dynamic systems to determine effective integrated process control designs. IIE Transactions, 30(3), 247–256.
  • Nembhard, H. B. and Mastrangelo, C. M. (1988). Integrated process control for startup operations. Journal of Quality Technology, 30(3), 201–211.
  • Nembhard, H. B. and Kao, M. S. (2003). Adaptive forecast-based monitoring for dynamic systems. Technometrics, 45(3), 208–219.
  • Nieckula, J. and Hryniewicz, O. (1997). Neural network support for Shewhart X-bar control chart. Systems Science, 23(1), 154–157.
  • Ogata, K. (1990). Modern Control Engineering, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ.
  • Padgett, C. S. Thombs, L. A. and Padgett, W. J. (1992). On the a-risks for Shewhart control charts. Communications in Statistics — Simulation and Computation, 21(4), 1125–1147.
  • Pan, X. and Jarrett, J. (2004). Applying state space to SPC: monitoring multivariate time series. Journal of Applied Statistics, 31 (4): 397–418.
  • Pandit, S. M. and Wu, S. (1983). Time Series and System Analysis with Applications. John Wiley & Sons, New York.
  • Papaleonida, G. (2002). Control Charts for Autocorrelated Processes. MSc Thesis Athens University of Economics and Business ISBN: 960-8287-03-0.
  • Papaleonida, G. and Psarakis, S. (2002). Control charts for Monitoring Autocorrelated Processes. Athens University of Economics and Business Technical Report 175 June 2002.
  • Park, C. (2001). A Statistical process control procedure with adjustments and monitoring. Nonlinear Analysis, 47(3), 2061–2072.
  • Pawlak, M., Rafajlowicz, E. and Steland, A. (2004). On detecting jumps in time series: Nonparametric settings. Robustness of Measures of Common Cause Sigma in Presence of Data Correlation Nonparametric Statistics, 16(3–4) 329–347.
  • Prasad, S. S. R. and Bhadury, B. (2004). Robustness of measures of common cause sigma in presence of data correlation. Journal of Statistical Computation and Simulation, 74(5), 313–338.
  • Prybutok, V. R., Clayton, H. R. and Harvey, M. M. (1997). Comparison of fixed versus variable sampling interval Shewhart control charts in the presence of positive autocorrelated data. Communications in Statistics-Simulation and Computation, 26(1), 83–106.
  • Quesenberry, C. P. (1991) SPC-Q-charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 47–58.
  • Ramjee, R., Crato, N. and Ray, B. K. (2002). A note on moving average forecasts of long memory processes with an application to quality control. International Journal of Forecasting, 18(2), 291–297.
  • Reynolds, M. R. Jr., Amin, R.W., Arnold, J. C. and Nachlas, J. A. (1988). X charts with variable sampling intervals. Technometrics, 30 (2), 181–192.
  • Reynolds, M. R. Jr. (1995). Evaluating properties of variable sampling interval control charts. Sequential Analysis, 14 (1), 59–97.
  • Reynolds, M. R. Jr., Arnold, J. C. and Baik, J. W. (1996). Variable sampling interval charts in the presence of correlation. Journal of Quality Technology, 28(1), 12–30.
  • Roberts, S. N. (1959). Control chart tests based on geometric moving averages, Technometrics, 1(3), 239–250.
  • Rosolowski, M. and Schmid, W. (2006). EWMA charts for monitoring the mean and autocovariances of stationary processes. Statistical Papers, 47(4), 595–630.
  • Runger, G. C. (1996). Multivariate statistical process control for autocorrelated processes. International Journal of Production Research, 34(6), 1715–1724.
  • Runger, G. C. (2002). Assignable causes and autocorrelation: control charts for observations or residuals? Journal of Quality Technology, 34(2), 165–170.
  • Runger, G. C. and Testik, M. C. (2003). Control charts for monitoring fault signatures: Cuscore versus GLR. Quality and Reliability Engineering International, 19(4), 387–396.
  • Runger, G. C., Willemain, T. R. and Prabhu, S. (1995). Average run lengths for CUSUM control charts applied to residuals. Communications in Statistics — Theory and Methods, 24(1), 273–282.
  • Runger, G. C. and Willemain, T. R. (1996). Batch means control charts for autocorrelated data. IIE Transactions, 28(6), 483–487.
  • Runger, G. C. and Willemain, T. R. (1995). Model-based and model-free control of autocorrelated processes. Journal of Quality Technology, 27(4), 283–292.
  • Ryan, TP. (1991). Discussion of Some statistical process control methods for autocorrelated Data by D.C. Montgomery and C.M. Mastrangelo. Journal of Quality technology, 23 (3), 200–202.
  • Ryan, TP. (2000). Statistical Methods for Quality Improvement, 2nd edition. John Wiley & Sons, New York.
  • Schmid, W. (1995). On the run length of a Shewhart chart for correlated data. Statistical Papers, 36(2), 111–130.
  • Schmid, W. (1997a). On EWMA charts for time series. Frontiers of Statistical Quality Control 5. Edited by H.J. Lenz and P.-Th. Wilrich. Physica-Verlag, Heidelburg.
  • Schmid, W. (1997b). CUSUM control schemes for gaussian processes. Statistical Papers, 38(2), 191–217.
  • Schmid, W. and Schone, A. (1997). Some properties of the EWMA control chart in the presence of autocorrelation. Annals of Statistics, 25(3), 1277–1283.
  • Shepherd, D. K., Champ, C. W., Ridgon, S. E. and Fuller, H. T. (2006). Attribute charts for monitoring a dependent process. Quality and Reliability Engineering International, in press.
  • Shu, L., Apley, D. W. and Tsung, F. (2002). Autocorrelated process monitoring using triggered cuscore charts. Quality and Reliability Engineering International,18(5), 411–421.
  • Snoussi, A. El Ghourabi, M. and Limam, M. (2005). On SPC for short run autocorrelated data. Communications in Statistics — Simulation and Computation, 34(1), 219–234.
  • Sparks, R. S. (2000). CUSUM charts for AR1 data: are they worth the effort? Australian & New Zealand Journal of Statistics, 42(1), 25–42.
  • Stimson, W. A. and Mastrangelo, C. M. (1996). Monitoring serially-dependent processes with attribute data. Journal of Quality Technology, 28(3), 279–288.
  • Stoubos, Z. G. and Reynolds, M. R. (2000). Robustness to non-normality and autocorrelation of individuals control charts. Journal of Statistical Computation and Simulation, 66(2), 145–187.
  • Tang, L.-C. and Cheong, W.-T. (2006). A control scheme for high-yield correlated production under group inspection. Journal of Quality Technology, 38(1), 45–56.
  • Terpstra, J. T., McKean, J. W. and Anderson, K. (2003). Studentized autoregressive time series residuals. Computational Statistics, 18(1), 123–141.
  • Testik, M. C. (2005). Model inadequacy and residuals control charts for autocorrelated processes. Quality and Reliability Engineering International, 21(2), 115–130.
  • Theodossiou, P. T. (1993). Predicting shifts in the mean of multivariate time series process: an application in predicting business failures. Journal of the American Statistical Association, 88(422), 441–447.
  • Timmer, D. H., Pigniatiello, Jr. and Longnecker, M. (1998). The development and evaluation of CUSUM-based control charts for an AR(1) process. IIE Transactions, 30(6), 525–534.
  • Timmer, D. H. and Pigniatiello, Jr. (2003). Change point estimates for the parameters of an AR(1) process. Quality and Reliability Engineering International, 19(4), 355–369.
  • Triantafyllpoulos, K. (2006). Multivariate control charts based on Bayesian state space models. Quality and Reliability Engineering International, 22(6), 693–707.
  • Tsung, F. and Tsui, K. L. (2003). A mean-shift pattern study on integration of SPC and APC for process monitoring. IIE Transactions, 35(3), 231–242.
  • Tsung, F., Zhao, Y., Xiang, L. and Jiang, W. (2006). Improved design of proportional integral derivative charts. Journal of Quality Technology, 38(1), 31–43.
  • Vander, W., S. A. (1996). Monitoring Processes that wander using integrated moving average models. Technometrics, 38(2), 139–151.
  • VanBrackle, L. N. and Reynolds, M. R. Jr. (1997). E WMA and CUSUM Control Charts in the Presence of Correlation. Communications in Statistics-Simulation and Computation, 26(4), 979–1008.
  • Vapnik, V. (1979). Estimation of Dependencies Based on Empirical Data (in Russian), Moscow: Nauka. (English translation: New York: Springer Verlag, 1982).
  • Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer Verlag.
  • Vasilopoulos, A. V. and Stamboulis, A. P. (1978). Modification of control chart limits in the presence of data correlation. Journal of Quality Technology, 10 (1), 20–30.
  • Wade, R. and Woodall, W. (1993). A review and analysis of cause-selecting control charts. Journal of Quality Technology, 25 (3), 161–188.
  • Wang, F. K. (2005). A simple data transformation for auto-correlated data for SPC. International Journal of Production Research, 43(5), 981–989.
  • Wardell, D. G., Moskowitz, H. and Plante, R. D. (1992). Control charts in the presence of data autocorrelation. Management Science, 38(8), 1084–1105.
  • Wardell, D. G., Moskowitz, H. and Plante, R. D. (1994). Run-length distributions of special-cause control charts for correlated process. Technometrics, 36(1), 3–27.
  • West, D., Dellana, S. and Jarrett, J. (2002). Transfer function modelling of processes with dynamic inputs. Journal of Quality Technology, 34(3), 315–326.
  • Wilkstrom, C., Albano, C., Eriksson, L., Friden, H., Johansson, E., Nordahl, A., Rannar, S., Sandberg, M., Kettaneh-Wold, N. and Wold, S. (1998). Multivariate process and quality monitoring applied to an electrolysis process: Part II. Multivariate time-series analysis of lagged latent variables. Chemometrics and Intelligent Laboratory Systems, 42(1–2), 233–240.
  • Winkel, P. and Zhang, N. F. (2004). Serial correlation of quality control data — on the use of proper control charts. Scandinavian Journal of clinical & Laboratory Investigation, 64(3), 195–203.
  • Wisnowski, J. W. and Keats, J. B. (1999). Monitoring the availability of assets with binomial and correlated observations. Quality Engineering, 11(3), 387–393.
  • Woodall, W. H., Spitzner, D. J., Montgomery, D. C. and Gupta, S. (2004). Using control charts to monitor process and product quality profiles. Journal of Quality Technology, 36(3), 309–320.
  • Wright C. M., Booth, D. E. and Hu, M. Y. (2001). Joint estimation:, SPC method for short-run autocorrelated data. Journal of Quality Technology, 33(3), 365–378.
  • Xie, L., Kruger, U., Lieftucht, D., Littler, T., Chen, Q. and Wang, S. (2006). Statistical monitoring of dynamic multivariate processes-Part 1. Modeling autocorrelation and cross-correlation. International Engineering Chemistry Research, 45(5), 1659–1676.
  • Yang, J. and Makis, W. (2000). Dynamic response of residuals to external deviations in a controlled production process. Technometrics, 42(3), 290–299.
  • Yang, S. and Yang, C. (2005). Effects of imprecise measurement on the two dependent processes control for the autocorrelated observations. The International Journal of Advanced Manufacturing Technology, 26(5–6), 623–630.
  • Yang, S. and Yang, C. (2006). An approach to controlling two dependent process steps with autocorrelated. The International Journal of Advanced Manufacturing Technology, 29(1–2), 170–177.
  • Yang, K. and Hancock, W. M. (1990). Statistical quality control for correlated samples. International Journal of Production Research, 28(3), 595–608.
  • Yashchin, E. (1993). Performance of CUSUM control charts for serially correlated observations. Technometrics, 35(1), 37–52.
  • Ye, N., Borror, C. and Mang, Y. B. (2002). EWMA techniques for computer intrusion detection through anomalous changes in event intensity. Quality and Reliability Engineering International, 18(6), 443–451.
  • Ye, N., Vilbert, S. and Chen, Q. (2003). Computer intrusion detection through EWMA for autocorrelated and uncorrelated data. IEEE Transaction on Reliability, 52(1), 75–82.
  • Zhang (1984). A new type of control charts and a theory of diagnosis with control charts. World Quality Congress Trans. Am. Soc. Qual. Control, 75–85.
  • Zhang, N. F. (1997). Detection capability of residual control chart for stationary process data. Journal of Applied Statistics, 24(4), 363–380.
  • Zhang, N. F. (1998). A statistical control chart for stationary process data. Technometrics, 40(1), 24–39.
  • Zobel, C. W., Cook, D. F. and Nottingham, Q. J. (2004). An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters. International Journal of Production Research, 42(4), 741–758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.