387
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of yield shear strength of saturated sandy soils using artificial neural networks

Pages 199-213 | Received 21 Jun 2023, Accepted 22 Aug 2023, Published online: 28 Aug 2023

References

  • Olson SM, Stark TD. Use of laboratory data to confirm yield and liquefied strength ratio concepts. Can Geotech J. 2003;40(6):1164–1184. doi: 10.1139/t03-058
  • Baghbani A, Choudhury T, Costa S, et al. Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth Sci Rev. 2022;228: doi: 10.1016/j.earscirev.2022.103991
  • ASTM D4767-11. Standard test method for consolidated undrained triaxial compression test for cohesive soils. In: Annual book of ASTM standards. West Conshohocken, PA: American Society for Testing and Materials; 2020. pp. 14 doi: 10.1520/D4767-11R20
  • Olson SM 2001. “Liquefaction analysis of level and sloping ground using field case histories and penetration resistance”, Ph.D. thesis, University of Illinois at Urbana–Champaign, Urbana, Ill. [online]. Available from http://pgi-tp.ce.uiuc.edu/olsonwebfiles/olsonweb/index.html [cited December 2002].
  • Konrad JM. Minimum undrained strength of two sands. J Geotech Eng, ASCE. 1990;116(6):932–947. doi: 10.1061/(ASCE)0733-9410(1990)116:6(932)
  • Chillarige AV, Robertson PK, Morgenstern NR, et al. Evaluation of the in situ state of Fraser River sand. Can Geotech J. 1997;34(4):510–519. doi: 10.1139/t97-018
  • Pillai VS, Stewart RA. Evaluation of liquefaction potential of foundation soil at Duncan Dam. Can Geotech J. 1994;31(6):951–966. doi: 10.1139/t94-110
  • Canou J, Bahda F, Saitta A, et al. (1994). “Initiation of sand liquefaction under monotonic and cyclic loading”, Proc., 13th International Conf. on Soil Mechanics and Foundation Engineering, January 5-10, New Delhi, India, Vol. 3, 1297–1300
  • Highter WH, Tobin RF. Flow slides and the undrained brittleness index of some mine tailings. Eng Geol. 1980;16(1–2):71–82. doi: 10.1016/0013-7952(80)90008-3
  • Highter WH, Vallee RP. The liquefaction of different mine tailings under stress-controlled conditions. Engineering Geology. 1980;16(1–2):147–150. doi: 10.1016/0013-7952(80)90014-9
  • Dyvik R, Høeg K. Comparison of tests on undisturbed and reconstituted silt and silty sand. In: Lade P, and Yamamuro J, editors Intl. Workshop on the physics and mechanics of soil liquefaction. 1st ed. Chapter 14. Baltimore, Maryland: Johns Hopkins University; 1999.
  • Dennis ND. “Influence of specimen preparation techniques and testing procedures on undrained steady-state shear strength”, Advanced triaxial testing of soil and rock, ASTM STP 977. Donaghe, R.T., Chaney, R.C., Silver, M.L., eds. American Society for Testing and Materials;Philadelphia: 1988pp. 642–654. doi: 10.1520/STP29104S
  • Arulanandan K, Seed HB, Yogachandran C, et al. Centrifuge study on volume changes and dynamic stability of earth dams. J Geotech Eng, ASCE. 1993;119(11):1717–1731. doi: 10.1061/(ASCE)0733-9410(1993)119:11(1717)
  • Sladen JA, D’Hollander RD, Krahn J. The liquefaction of sands, a collapse surface approach. Can Geotech J. 1985;22(4):564–578. doi: 10.1139/t85-076
  • Sladen JA, Handford G. A potential systematic error in laboratory testing of very loose sands. Can Geotech J. 1987;24(3):462–466. doi: 10.1139/t87-058
  • Takeshita S, Takeishi M, Tamada K (1995). “Static liquefaction of sands and its liquefaction index”, Proc., 1st International Conf. on Earthquake Geotechnical Engineering, Nov. 14-16, Tokyo, Japan, Vol. 1, 177–182.
  • Riemer MF, Seed RB. Factors affecting apparent position of steady-state line. J Geotech GeoEnviron Eng, ASCE. 1997;123(3):281–288. doi: 10.1061/(ASCE)1090-0241(1997)123:3(281)
  • Chu J. An experimental examination of the critical state and other similar concepts for granular soils. Can Geotech J. 1995;32(6):1065–1075. doi: 10.1139/t95-104
  • Hanzawa H. Undrained strength and stability analysis for a quick sand. Soils Found. 1980;20(2):17–29. doi: 10.3208/sandf1972.20.2_17
  • Konrad JM. Undrained response of loosely compacted sands during monotonic and cyclic compression tests. Geotechnique. 1993;43(1):69–89. doi: 10.1680/geot.1993.43.1.69
  • Konrad JM, Pouliot N. Ultimate state of reconstituted and intact samples of deltaic sand. Can Geotech J. 1997;34(5):737–748. doi: 10.1139/T97-039
  • Konrad JM. Sand state from cone penetration tests: a framework considering grain crushing stress. Geotechnique. 1998;48(2):201–215. doi: 10.1680/geot.1998.48.2.201
  • Been K, Jefferies MG, Hachey J. The critical state of sands. Geotechnique. 1991;41(3):365–381. doi: 10.1680/geot.1991.41.3.365
  • Bryant SM, Duncan JM, Seed HB (1983). “Application of tailings dam flow analyses to field conditions”, Report No. UCB/GT/83-03, Dept. of Civil Engineering, Univ. of California, Berkeley, CA.
  • Baziar MH, Dobry R. Residual strength and large-deformation potential of loose silty sands. J Geotech Eng, ASCE. 1995;121(12):896–906. doi: 10.1061/(ASCE)0733-9410(1995)121:12(896)
  • Ishihara K. Liquefaction and flow failure during earthquakes. Geotechnique. 1993;43(3):351–415. doi: 10.1680/geot.1993.43.3.351
  • Abu Kiefa M.A. General Regression Neural Networks for Driven Piles in Cohesionless Soils. J. Geotech. Geoenviron. Eng. 1998;124(12):1177. doi: 10.1061/(ASCE)1090-0241
  • Banimahd M, Yasrobi SS, Woodward PK. Artificial neural network for stress–strain behavior of sandy soils: Knowledge based verification. Comput Geotech. 2005;32(5):377–386. doi: 10.1016/j.compgeo.2005.06.002
  • Bensoula M, Bousmaha M, Missoum H. Relative density influence on the liquefaction potential of sand with fines. In: Revista de la Construcción. Vol. 21. Santiago; 2022. p. no.3 doi: 10.7764/rdlc.21.3.692