655
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A smart green mashrabiyya-shutter design for residential applications in Egypt

ORCID Icon, ORCID Icon & ORCID Icon
Pages 229-252 | Received 01 Aug 2023, Accepted 07 Sep 2023, Published online: 25 Sep 2023

References

  • Asfour K. The domestication of knowledge: Cairo at the turn of the Century. Muqarnas. 1993;10:125–137. doi: 10.2307/1523178
  • Abu-Lughod J. Tale of two cities: the origins of modern Cairo. Comp Stud Soc Hist. 1965;7(4):429–457. doi: 10.1017/S0010417500003819
  • Abdel Gelil M N, Badawy NM. Simulated comparative investigation of the daylight and airflow of the conventional Egyptian shutter ‘sheesh’ and a proposed latticework device ‘new mashrabiyya’. Indoor Built Environ. 2014;24(5):583–596. doi: 10.1177/1420326X13516656
  • Xu A, Tresa E, Bacchetta M, et al. Trade and climate change, information brief N°4: carbon content of international trade. Geneva: World Trade Organization; 2021.
  • Li S, Wu H, Ding Z. Identifying sustainable wood sources for the construction industry: a case study. Sustainability. 2018;10(1):139. doi: 10.3390/su10010139
  • FAO. Forestry production and trade. cited: 2022 May, 14 Available from: https://www.fao.org/faostat/en/#data/FO
  • Bagasi AA, Calautit JK. Experimental field study of the integration of passive and evaporative cooling techniques with Mashrabiya in hot climates. Energy Build. 2020 10 15;225:110325. doi: 10.1016/j.enbuild.2020.110325
  • Lane EW. Manners and customs of the modern Egyptians, reprint of the 1860. 3rd ed. London: Dent; 1954.
  • Behrens-Abouseif D. Mashrabiyya. In: Bosworth CE, Donzel V, Lewis B Pellat C, editors The encyclopaedia of Islam new edition. Vol. 6. Leiden: E.J. Brill; 1991. pp. 717–720.
  • Fathy H. Vernacular architecture: principles and examples with reference to hot arid climates. Chicago: The University of Chicago Press; 1986. p. 47.
  • Maury B, Raymond A, Revault J, et al. Palais et maisons du Caire. Tome II: Époque ottomane (XVIe-XVIIIe siècles). Aix-en-Provence: Institut de recherches et d’études sur les mondes arabes et musulmans; 1983. doi: 10.4000/books.iremam.3291
  • Abdel Gelil M N. A New mashrabiyya for contemporary Cairo: integrating traditional latticework from Islamic and Japanese cultures. J Asian Archit Build Eng. 2006 05 01;5(1):37–44. doi: 10.3130/jaabe.5.37
  • Abdel Gelil M N, Hussein A W. Traditional residential architecture in Cairo from a green architecture perspective. Arts Des Stud. 2014;16:6–26. doi: 10.7176/ads/2014-1-1
  • Kenzari B, Elsheshtawy Y. The ambiguous veil: on transparency, the Mashrabiy’ya, and architecture. J Archit Educ. 2003 05 01;56(4):17–25. doi: 10.1162/104648803321672924
  • El-Mously H. Innovating green products as a mean to alleviate poverty in upper Egypt. Ain Shams Eng J. 2018;9(4):2039–2056. doi: 10.1016/j.asej.2017.02.001
  • Midani M, Saba N, Alothman OY, et al. “Date palm fiber composites,” (composites science and technology). Singapore: Springer Singapore; 2020. doi: 10.1007/978-981-15-9339-0
  • FAO. Crops and livestock products. cited: 13 February. 2022 Available from: https://www.fao.org/faostat/en/#data/QCL
  • Zaid A, de Wet PF. Botanical and systematic Description of the date palm. In: Zaid A, editor Date palm cultivation. Rome: Food and Agricultural Organization of the United Nations; 2002. https://www.fao.org/3/Y4360E/y4360e05.htm#bm05
  • Agoudjila B, Benchabane A, Boudenne A, et al. Renewable materials to reduce building heat loss: characterization of date palm wood. Energy Build. 2011 02 01;43(2):491–497. doi: 10.1016/j.enbuild.2010.10.014
  • El-Mously H. Date palm fiber composites as wood substitutes. In: Midani M, Saba N, and Alothman O, editors. Date palm fiber composites: processing, properties and applications. Singapore: Springer Singapore; 2020. pp. 357–386. doi: 10.1007/978-981-15-9339-0_13
  • El-Mously H, Darwish EA. Date palm byproducts: history of utilization and technical heritage. In: Midani M, Saba N, and Alothman OY, editors Date palm fiber composites: processing, properties and applications. Singapore: Springer Singapore; 2020. pp. 3–71. doi: 10.1007/978-981-15-9339-0_1
  • Attia S, Lioure R, Declaude Q. Future trends and main concepts of adaptive facade systems. Energy Sci Eng. 2020 09 01;8(9):3255–3272. doi: 10.1002/ese3.725
  • San Martin JP, Garcia-Alegre MC, Guinea D. Reducing thermal energy demand in residential buildings under Spanish climatic conditions: qualitative control strategies for massive shutter positioning. Build Simul. 2017 10 01;10(5):643–661. doi: 10.1007/s12273-017-0360-5
  • Fazel A, Izadi A, Azizi M. Low-cost solar thermal based adaptive window: combination of energy-saving and self-adjustment in buildings. Solar Energy. 2016;133:274–282. doi: 10.1016/j.solener.2016.04.008
  • Mols T, Blumberga A, Karklina I. Evaluation of climate adaptive building shells: multi-criteria analysis. Energy Procedia. 2017 09 01;128:292–296. doi: 10.1016/j.egypro.2017.09.077
  • Jiang T, Zhao X, Yin X, et al. Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency. Appl Energy. 2021 04 01;287:116573. doi: 10.1016/j.apenergy.2021.116573
  • Olbina S, Hu J. Daylighting and thermal performance of automated split-controlled blinds. Build Environ. 2012 10 01;56:127–138. doi: 10.1016/j.buildenv.2012.03.002
  • Krippner R, Bonfig P. The “fassadenladen” (facade shutter)—A New interpretation of the window shutter, with biogenic materials. J Civil Eng Archit. 2020;14:368–377. doi: 10.17265/1934-7359/2020.07.003
  • Do CT, Chan Y-C. Daylighting performance analysis of a facade combining daylight-redirecting window film and automated roller shade. Build Environ. 2021 03 15;191:107596. doi: 10.1016/j.buildenv.2021.107596
  • Meteoblue. Simulated historical climate & weather data for Cairo [online]. Available from: https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/cairo_egypt_360630
  • CCKP. Egypt - Climatology. Available from: https://climateknowledgeportal.worldbank.org/country/egypt/climate-data-historical
  • Agrawala S, Moehner A, El Raey M, et al. Development and climate change in Egypt. Paris: Organisation for Economic Cooperation and Development; 2004.
  • Zare S, Hasheminejad N, Shirvan HE, et al. Comparing Universal thermal climate index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim Extremes. 2018 03 01;19:49–57. doi: 10.1016/j.wace.2018.01.004
  • Nguyen A-T, Tran Q-B, Tran D-Q, et al. An investigation on climate responsive design strategies of vernacular housing in Vietnam. Build Environ. 2011 10 01;46(10):2088–2106. doi: 10.1016/j.buildenv.2011.04.019
  • Mirzabeigi S, Khalili Nasr B, Mainini AG, et al. Tailored WBGT as a heat stress index to assess the direct solar radiation effect on indoor thermal comfort. Energy Build. 2021 07 01;242:110974. doi: 10.1016/j.enbuild.2021.110974
  • Lemke B, Kjellstrom T. Calculating workplace WBGT from meteorological data: a tool for climate change assessment, (in eng). Ind Health. 2012;50(4):267–278. doi: 10.2486/indhealth.MS1352
  • Hyatt OM, Lemke B, Kjellstrom T. Regional maps of occupational heat exposure: past, present, and potential future. Global Health Action. 2010 12 01;3(1):5715. doi: 10.3402/gha.v3i0.5715
  • Bernard TE, Pourmoghani M. Prediction of workplace wet bulb global temperature,” (in eng. Appl Occup Environ Hyg. 1999 Feb;14(2):126–134. doi: 10.1080/104732299303296
  • Stull R. Wet-bulb temperature from relative humidity and air temperature. J Appl Meteorol Climatol. 2011;50(11):2267–2269. doi: 10.1175/JAMC-D-11-0143.1
  • Pathirana S, Rodrigo A, Halwatura R. Effect of building shape, orientation, window to wall ratios and zones on energy efficiency and thermal comfort of naturally ventilated houses in tropical climate. Int J Energy Environ Eng. 2019 03 01;10(1):107–120. doi: 10.1007/s40095-018-0295-3
  • Bournas I. Daylight compliance of residential spaces: comparison of different performance criteria and association with room geometry and urban density. Build Environ. 2020 11 01;185:107276. doi: 10.1016/j.buildenv.2020.107276
  • Karlsen L, Heiselberg P, Bryn I, et al. Verification of simple illuminance based measures for indication of discomfort glare from windows. Build Environ. 2015 10 01;92:615–626. doi: 10.1016/j.buildenv.2015.05.040
  • Chen X, Yang H. Combined thermal and daylight analysis of a typical public rental housing development to fulfil green building guidance in Hong Kong. Energy Build. 2015 12 01;108:420–432. doi: 10.1016/j.enbuild.2015.09.032
  • Wienold J, Christoffersen J. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy Build. 2006 07 01;38(7):743–757. doi: 10.1016/j.enbuild.2006.03.017
  • Su X, Zhang X, Gao J. Evaluation method of natural ventilation system based on thermal comfort in China. Energy Build. 2009 01 01;41(1):67–70. doi: 10.1016/j.enbuild.2008.07.010
  • Azli MNAN, Khasri MA, Hariri A, et al. Pilot study on investigation of thermal sensation votes (TSV) and students’ performance in naturally ventilated classroom. Environ Ecol Res. 2022;10(4):508–517. doi: 10.13189/eer.2022.100409
  • Khovalyg D, Kazanci OB, Halvorsen H, et al. Critical review of standards for indoor thermal environment and air quality. Energy Build. 2020 04 15;213:109819. doi: 10.1016/j.enbuild.2020.109819
  • Gaisma. Cairo, Egypt - sun path diagram [online]. Available from: https://www.gaisma.com/en/location/cairo.html
  • Ariosto T, Memari AM, Solnosky RL. A comparative thermal properties evaluation for residential window retrofit solutions for U.S. markets. Adv Build Energy Res. 2021 01 02;15(1):87–116 doi: 10.1080/17512549.2018.1528885
  • Laouadi A, Parekh A. Complex fenestration systems: towards product ratings for indoor environment quality. Light Res Technol. 2007 06 01;39(2):109–122. doi: 10.1177/1365782806072673
  • Bogati S, Sharma M, Shrestha R. Designing of the wireless digital portable temperature and humidity monitoring device and analyzing data at different part of Kathmandu Valley. Semicond Sci Inf Devices, Arduino Uno;HC-05 Bluetooth Module;16 X 2 Lcd;DHT-11 Sensor Wireless. 2021 06 08;3(1):41–8. doi: 10.30564/ssid.v3i1.3138
  • Obaidah MA, Nahid SI, Khan MM. Research and development of wireless smart temperature and humidity monitoring System via Bluetooth module and Mobile application. Presented at the IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); Dec 1–4; New York. IEEE; 2021. p. 0686–0691. doi: 10.1109/UEMCON53757.2021.9666635
  • Iqbal F, Shabbir MI. Genetic analysis with pyrosequencing using loop pipetting and a light dependent resistor. Anal Methods. 2021;13(42):5035–5047. doi: 10.1039/D1AY01123E
  • Cho Y, Lee S, Kim T, et al. Near infrared light-sensing organic light-dependent resistors based on dialkoxybenzothiadiazole-containing conjugated polymer. Phys Status Solidi A. 2022 05 01;219(9):2200068. doi: 10.1002/pssa.202200068
  • Karadeniz AM, Alkayyali M, Szemes PT. Modelling and simulation of Stepper motor for position control using LabVIEW. Recent Innovations Mechatron. 2018;5(1):1–5., 07/02. doi: 10.17667/riim.2018.1/7
  • Sadek Mahmoud M, AlRamadhan AH. Optimizing the parameters of Sliding Mode Controllers for Stepper motor through Simulink response optimizer application. Int J Rob Control Syst, Sliding Mode Controller (SMC); Flat Output; Stepper Motor; Input-Output; State Feedback; Parameters Optim. 2021 07 08;1(2):209–225. doi: 10.31763/ijrcs.v1i2.345
  • Yadav S, Raghuvanshi R, Soni G, et al. Global system for mobile communication (GSM) monitoring in industries using arduino uno. IOP Conf Ser Mater Sci Eng. 2021 06 01;1136(1):012019. doi: 10.1088/1757-899x/1136/1/012019