10
Views
0
CrossRef citations to date
0
Altmetric
Review

The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 257-269 | Received 26 Aug 2023, Accepted 23 May 2024, Published online: 18 Jun 2024

References

  • Cao M, Luo H, Li D, Wang S, Xuan L, Sun L. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int J Cardiol. 2022;353:109–117. doi:10.1016/j.ijcard.2022.01.070
  • Lu S, Liang Q, Huang Y, Meng F, Liu J. Definition and review on a category of long non-coding RNA: atherosclerosis-associated circulating lncRNA (ASCLncRNA). PeerJ. 2020;8:e10001. doi:10.7717/peerj.10001
  • Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–2716. doi:10.1093/eurheartj/ehx165
  • Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3):20190027. doi:10.1515/jib-2019-0027
  • Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; a review to roles and biomarker potentials. Int J Biol Macromol. 2022;206:939–953. doi:10.1016/j.ijbiomac.2022.03.103
  • Cai CL, Jin L, Lang XL, Li BL. Long noncoding RNA XIST regulates cardiomyocyte apoptosis by targeting miR-873-5p/MCL1 axis. Eur Rev Med Pharmacol Sci. 2020;24(24):12878–12886.
  • Zhang M, Liu HY, Han YL, et al. Silence of lncRNA XIST represses myocardial cell apoptosis in rats with acute myocardial infarction through regulating miR-449. Eur Rev Med Pharmacol Sci. 2019;23(19):8566–8572.
  • Rezaee D, Saadatpour F, Akbari N, et al. The role of microRNAs in the pathophysiology of human central nervous system: a focus on neurodegenerative diseases. Ageing Res Rev. 2023;92:102090. doi:10.1016/j.arr.2023.102090
  • Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Razavi ZS, Mardi A. Molecular landscape of LncRNAs in bladder cancer: from drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother. 2023;165:115242. doi:10.1016/j.biopha.2023.115242
  • Kartha RV, Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet. 2014;5:8. doi:10.3389/fgene.2014.00008
  • Xu J, Xu J, Liu X, Jiang J. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Discovery. 2022;8(1):287. doi:10.1038/s41420-022-01061-x
  • Wang W, Min L, Qiu X, et al. Biological function of long non-coding RNA (LncRNA) Xist. Front Cell Dev Biol. 2021;9:645647. doi:10.3389/fcell.2021.645647
  • Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592(17):2884–2900. doi:10.1002/1873-3468.13182
  • Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med. 2021;27(1):159. doi:10.1186/s10020-021-00421-0
  • Razeghian-Jahromi I, Karimi Akhormeh A, Zibaeenezhad MJ. The role of ANRIL in atherosclerosis. DisMarkers. 2022;2022:8859677. doi:10.1155/2022/8859677
  • Yan Y, Song D, Song X, Song C. The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life. 2020;72(3):334–342. doi:10.1002/iub.2210
  • Siniscalchi C, Di Palo A, Russo A, Potenza N. The lncRNAs at X chromosome inactivation center: not just a matter of sex dosage compensation. Int J Mol Sci. 2022;23(2):611. doi:10.3390/ijms23020611
  • Zampetaki A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: is there a link? Front Physiol. 2018;9:1201. doi:10.3389/fphys.2018.01201
  • Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(Suppl. 8):C7–12. doi:10.1016/j.jacc.2005.09.068
  • Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927–946.
  • Bok JS, Byun SH, Park BW, et al. The Role of Human Umbilical Vein Endothelial Cells in Osteogenic Differentiation of Dental Follicle-Derived Stem Cells in in vitro co-cultures. Int J Med Sci. 2018;15(11):1160–1170. doi:10.7150/ijms.27318
  • Zhang R, Qin Y, Zhu G, Li Y, Xue J. Low serum miR-320b expression as a novel indicator of carotid atherosclerosis. J Clin Neurosci. 2016;33:252–258. doi:10.1016/j.jocn.2016.03.034
  • Xu X, Ma C, Liu C, Duan Z, Zhang L. Knockdown of long noncoding RNA XIST alleviates oxidative low-density lipoprotein-mediated endothelial cells injury through modulation of miR-320/NOD2 axis. Biochem Biophys Res Commun. 2018;503(2):586–592. doi:10.1016/j.bbrc.2018.06.042
  • Johansson ME, Zhang XY, Edfeldt K, et al. Innate immune receptor NOD2 promotes vascular inflammation and formation of lipid-rich necrotic cores in hypercholesterolemic mice. Eur J Immunol. 2014;44(10):3081–3092. doi:10.1002/eji.201444755
  • Liu HQ, Zhang XY, Edfeldt K, et al. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33(9):2193–2201. doi:10.1161/ATVBAHA.113.301715
  • Vlacil AK, Schuett J, Ruppert V, et al. Deficiency of nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 reduces atherosclerosis. Basic Res Cardiol. 2020;115(4):47. doi:10.1007/s00395-020-0806-2
  • Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22–27. doi:10.1016/j.jjcc.2018.05.010
  • Lu G, Tian P, Zhu Y, Zuo X, Li X. LncRNA XIST knockdown ameliorates oxidative low-density lipoprotein-induced endothelial cells injury by targeting miR-204-5p/TLR4. J Biosci. 2020;45:52. doi:10.1007/s12038-020-0022-0
  • Zhao J, Cui L, Sun J, et al. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell Signal. 2020;76:109781. doi:10.1016/j.cellsig.2020.109781
  • Zirlik A, Bavendiek U, Libby P, et al. TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27(5):1101–1107. doi:10.1161/ATVBAHA.107.140566
  • Weinberg EO, Genco CA. Directing TRAF-ic: cell-specific TRAF6 signaling in chronic inflammation and atherosclerosis. Circulation. 2012;126(14):1678–1680. doi:10.1161/CIRCULATIONAHA.112.134379
  • Wang W, Li H, Shi Y, et al. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: possible strategies for prevention and treatment of atherosclerosis. Phytomedicine. 2024;122:155139. doi:10.1016/j.phymed.2023.155139
  • Zhuang X, Li R, Maimaitijiang A, et al. miR-221-3p inhibits oxidized low-density lipoprotein induced oxidative stress and apoptosis via targeting a disintegrin and metalloprotease-22. J Cell Biochem. 2019;120(4):6304–6314. doi:10.1002/jcb.27917
  • Gao H, Guo Z. LncRNA XIST regulates atherosclerosis progression in ox-LDL-induced HUVECs. Open Med (Wars). 2021;16(1):117–127. doi:10.1515/med-2021-0200
  • Consuegra-Sanchez L, Fredericks S, Kaski JC. Pregnancy-associated plasma protein-A (PAPP-A) and cardiovascular risk. Atherosclerosis. 2009;203(2):346–352. doi:10.1016/j.atherosclerosis.2008.07.042
  • Harrington SC, Simari RD, Conover CA. Genetic deletion of pregnancy-associated plasma protein-A is associated with resistance to atherosclerotic lesion development in apolipoprotein E-deficient mice challenged with a high-fat diet. Circ Res. 2007;100(12):1696–1702. doi:10.1161/CIRCRESAHA.106.146183
  • Yu XH, He LH, Gao JH, Zhang DW, Zheng XL, Tang CK. Pregnancy-associated plasma protein-A in atherosclerosis: molecular marker, mechanistic insight, and therapeutic target. Atherosclerosis. 2018;278:250–258. doi:10.1016/j.atherosclerosis.2018.10.004
  • Peng K, Jiang P, Du Y, et al. Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life. 2021;73(1):177–187. doi:10.1002/iub.2419
  • Zheng Z, Zhang G, Liang X, Li T. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol Cell Biochem. 2021;476(1):443–455. doi:10.1007/s11010-020-03921-5
  • Hu WN, Duan ZY, Wang Q, Zhou DH. The suppression of ox-LDL-induced inflammatory response and apoptosis of HUVEC by lncRNA XIAT knockdown via regulating miR-30c-5p/PTEN axis. Eur Rev Med Pharmacol Sci. 2019;23(17):7628–7638.
  • Zhang J, Li SF, Chen H, Song JX. MiR-106b-5p inhibits tumor necrosis factor-α-induced apoptosis by targeting phosphatase and tensin homolog deleted on chromosome 10 in vascular endothelial cells. Chin Med J (Engl). 2016;129(12):1406–1412. doi:10.4103/0366-6999.183414
  • Zhang Y, Wang L, Xu J, Kong X, Zou L. Up-regulated miR-106b inhibits ox-LDL-induced endothelial cell apoptosis in atherosclerosis. Braz J Med Biol Res. 2020;53(3):e8960. doi:10.1590/1414-431x20198960
  • Guo JT, Wang L, Yu HB. Knockdown of NEAT1 mitigates ox-LDL-induced injury in human umbilical vein endothelial cells via miR-30c-5p/TCF7 axis. Eur Rev Med Pharmacol Sci. 2020;24(18):9633–9644.
  • Li G, Zong W, Liu L, Wu J, Pang J. Knockdown of long non-coding RNA plasmacytoma variant translocation 1 relieves ox-LDL-induced endothelial cell injury through regulating microRNA-30c-5p in atherosclerosis. Bioengineered. 2022;13(2):2791–2802. doi:10.1080/21655979.2021.2019878
  • Ceolotto G, Giannella A, Albiero M, et al. miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res. 2017;113(13):1627–1638. doi:10.1093/cvr/cvx157
  • Vilahur G. Relevance of low miR-30c-5p levels in atherogenesis: a promising predictive biomarker and potential therapeutic target. Cardiovasc Res. 2017;113(13):1536–1537. doi:10.1093/cvr/cvx194
  • Chen Z, Xue Q, Cao L, et al. Toll-like receptor 4 mediated oxidized low-density lipoprotein-induced foam cell formation in vascular smooth Muscle cells via Src and Sirt1/3 pathway. Mediators Inflamm. 2021;2021:6639252. doi:10.1155/2021/6639252
  • Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J Lipid Res. 2009;50(Suppl.):S340–S345. doi:10.1194/jlr.R800056-JLR200
  • Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702. doi:10.1161/CIRCRESAHA.115.306361
  • Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J Cell Mol Med. 2007;11(1):88–95. doi:10.1111/j.1582-4934.2007.00011.x
  • Yang K, Zhang XJ, Cao LJ, et al. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein. PLOS ONE. 2014;9(4):e95935. doi:10.1371/journal.pone.0095935
  • Stoll LL, Denning GM, Li WG, et al. Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immunol. 2004;173(2):1336–1343. doi:10.4049/jimmunol.173.2.1336
  • Yang K, Xue Y, Gao X. LncRNA XIST Promotes Atherosclerosis by Regulating miR-599/TLR4 Axis. Inflammation.2021;44(3):965–973. doi:10.1007/s10753-020-01391-x
  • Zhang Y, Tang Y, Yan J. LncRNA-XIST Promotes Proliferation and Migration in ox-LDL Stimulated Vascular Smooth Muscle Cells through miR-539-5p/SPP1 Axis. Oxid Med Cell Longev. 2022;2022:9911982. doi:10.1155/2022/9911982
  • Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993;92(4):1686–1696. doi:10.1172/JCI116755
  • Fontaine M, Herkenne S, Ek O, et al. Extracellular vesicles mediate communication between endothelial and vascular smooth muscle cells. Int J Mol Sci. 2021;23(1):331. doi:10.3390/ijms23010331
  • Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf). 2015;214(1):33–50. doi:10.1111/apha.12466
  • Zhu D, Mackenzie NC, Shanahan CM, Shroff RC, Farquharson C, MacRae VE. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J Cell Mol Med. 2015;19(1):165–174. doi:10.1111/jcmm.12373
  • Mo L, Jiang HB, Tian GR, Lu GJ. The proliferation and migration of atherosclerosis-related HVSMCs were inhibited by downregulation of lncRNA XIST via regulation of the miR-761/BMP9 axis. Kaohsiung J Med Sci. 2022;38(1):18–29. doi:10.1002/kjm2.12456
  • Mitrofan CG, Appleby SL, Nash GB, et al. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. J Biol Chem. 2017;292(33):13714–13726. doi:10.1074/jbc.M117.778506
  • Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–1817. doi:10.1152/physrev.00022.2018
  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317. doi:10.1016/B978-0-12-394309-5.00006-7
  • Li Z, Zhang Y, Ding N, et al. Inhibition of lncRNA XIST Improves Myocardial I/R Injury by Targeting miR-133a through Inhibition of Autophagy and Regulation of SOCS2. Mol Ther Nucleic Acids. 2019;18:764–773. doi:10.1016/j.omtn.2019.10.004
  • Liang D, Jin Y, Lin M, Xia X, Chen X, Huang A. Down-regulation of Xist and Mir-7a-5p improves LPS-induced myocardial injury. Int J Med Sci. 2020;17(16):2570–2577. doi:10.7150/ijms.45408
  • Lin B, Xu J, Wang F, Wang J, Zhao H, Feng D. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY). 2020;12(8):7232–7247. doi:10.18632/aging.103072
  • Wang Y, Liu Y, Fei A, Yu Z. LncRNA XIST facilitates hypoxia-induced myocardial cell injury through targeting miR-191-5p/TRAF3 axis. Mol Cell Biochem. 2022;477(6):1697–1707. doi:10.1007/s11010-022-04385-5
  • Xiao X, He Z, Tong S, et al. lncRNA XIST knockdown suppresses hypoxia/reoxygenation (H/R)-induced apoptosis of H9C2 cells by regulating miR-545-3p/G3BP2. IUBMB Life. 2021;73(9):1103–1114. doi:10.1002/iub.2512
  • Zhou J, Li D, Yang BP, Cui WJ. LncRNA XIST inhibits hypoxia-induced cardiomyocyte apoptosis via mediating miR-150-5p/Bax in acute myocardial infarction. Eur Rev Med Pharmacol Sci. 2020;24(3):1357–1366.
  • Zhou T, Qin G, Yang L, Xiang D, Li S. LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J Cell Physiol. 2019;234(6):8659–8667. doi:10.1002/jcp.26327
  • Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–431. doi:10.1111/febs.14186
  • Wang K, Liu F, Liu CY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23(8):1394–1405. doi:10.1038/cdd.2016.28
  • Liu Z, Ye P, Wang S, et al. MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction. Circ Cardiovasc Genet. 2015;8(1):11–20. doi:10.1161/CIRCGENETICS.114.000598
  • Tang Y, Wang Y, Park KM, et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc. Res. 2015;106(3):387–397. doi:10.1093/cvr/cvv121
  • Ren K, Li B, Jiang L, et al. circ_0023461 silencing protects cardiomyocytes from hypoxia-induced dysfunction through targeting miR-370-3p/PDE4D signaling. Oxid Med Cell Longev. 2021;2021:8379962. doi:10.1155/2021/8379962
  • Pan X, He Y, Chen Z, Yan G, Ma G. Circulating miR-130 is a potential bio signature for early prognosis of acute myocardial infarction. J Thorac Dis. 2020;12(12):7320–7325. doi:10.21037/jtd-20-3207
  • Chu X, Wang Y, Pang L, Huang J, Sun X, Chen X. miR-130 aggravates acute myocardial infarction-induced myocardial injury by targeting PPAR-γ. J Cell Biochem. 2018;119(9):7235–7244. doi:10.1002/jcb.26903
  • Du M, Shan J, Feng A, Schmull S, Gu J, Xue S. Oestrogen receptor β activation protects against myocardial infarction via notch1 signalling. Cardiovasc Drugs Ther. 2020;34(2):165–178. doi:10.1007/s10557-020-06949-3
  • Yang H, Sun W, Quan N, et al. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway. Biochem Pharmacol. 2016;108:47–57. doi:10.1016/j.bcp.2016.03.019
  • Yu J, Zhang X, Zhang Y. Astragaloside attenuates myocardial injury in a rat model of acute myocardial infarction by upregulating hypoxia inducible factor-1α and Notch1/Jagged1 signaling. Mol Med Rep. 2017;15(6):4015–4020. doi:10.3892/mmr.2017.6522
  • Cheng S, Zhang X, Feng Q, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 2019;227:82–93. doi:10.1016/j.lfs.2019.04.040
  • Pei H, Yu Q, Xue Q, et al. Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 2013;108(5):373. doi:10.1007/s00395-013-0373-x
  • Peng H, Luo Y, Ying Y. lncRNA XIST attenuates hypoxia-induced H9c2 cardiomyocyte injury by targeting the miR-122-5p/FOXP2 axis. Mol Cell Probes. 2020;50:101500. doi:10.1016/j.mcp.2019.101500
  • Xie J. Long Noncoding RNA XIST Regulates Myocardial Infarction via miR-486-5p/SIRT1 Axis. Appl Biochem Biotechnol. 2023;195(2):725–734. doi:10.1007/s12010-022-04165-3
  • Sun X, Han Y, Dong C, et al. Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway. Biomed Pharmacother. 2022;151:113162. doi:10.1016/j.biopha.2022.113162
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi:10.1007/s00018-013-1349-6
  • Zhang H, Ma J, Liu F, Zhang J. Long non-coding RNA XIST promotes the proliferation of cardiac fibroblasts and the accumulation of extracellular matrix by sponging microRNA-155-5p. Exp Ther Med. 2021;21(5):477. doi:10.3892/etm.2021.9908
  • Eissa MG, Artlett CM. The microRNA miR-155 is essential in fibrosis. Noncoding RNA. 2019;5(1):23. doi:10.3390/ncrna5010023
  • Li Y, Duan JZ, He Q, Wang CQ. miR-155 modulates high glucose-induced cardiac fibrosis via the Nrf2/HO-1 signaling pathway. Mol Med Rep. 2020;22(5):4003–4016. doi:10.3892/mmr.2020.11495
  • Wei Y, Yan X, Yan L, et al. Inhibition of microRNA-155 ameliorates cardiac fibrosis in the process of angiotensin II-induced cardiac remodeling. Mol Med Rep. 2017;16(5):7287–7296. doi:10.3892/mmr.2017.7584
  • Wang F, Fan K, Zhao Y, Xie ML. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. J Ethnopharmacol. 2021;265:113195. doi:10.1016/j.jep.2020.113195
  • Wang F, Zhang J, Niu G, et al. Apigenin inhibits isoproterenol-induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR-122-5p/155-5p expressions. Drug Dev Res. 2022;83(4):1003–1015. doi:10.1002/ddr.21928
  • Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407. doi:10.1038/s41569-018-0007-y
  • Xiao L, Gu Y, Sun Y,et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol. 2019;234(8):13680–13692. doi:10.1002/jcp.28047
  • Chen Y, Liu X, Chen L, et al. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun. 2018;505(3):807–815. doi:10.1016/j.bbrc.2018.09.135
  • Gardner DG. Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends Endocrinol Metab. 2003;14(9):411–416. doi:10.1016/S1043-2760(03)00113-9
  • Higashikuni Y, Tanaka K, Kato M, et al. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1β upregulation via nuclear factor κB activation. J Am Heart Assoc. 2013;2(6):e000267. doi:10.1161/JAHA.113.000267
  • Trentin-Sonoda M, da Silva RC, Kmit FV, et al. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice. PLOS ONE. 2015;10(10):e0139350. doi:10.1371/journal.pone.0139350
  • Parker TG, Marks A, Tsoporis JN. Induction of S100b in myocardium: an intrinsic inhibitor of cardiac hypertrophy. Can J Appl Physiol. 1998;23(4):377–389. doi:10.1139/h98-022
  • Tsoporis JN, Marks A, Kahn HJ, et al. S100beta inhibits alpha1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes. J Biol Chem. 1997;272(50):31915–31921. doi:10.1074/jbc.272.50.31915
  • Tsoporis JN, Marks A, Kahn HJ, et al. Inhibition of norepinephrine-induced cardiac hypertrophy in s100beta transgenic mice. J Clin Invest. 1998;102(8):1609–1616. doi:10.1172/JCI3077
  • Luo Y, Chen J, Chen Y, et al. Qishen Yiqi dropping pills improve isoproterenol-induced cardiomyocyte hypertrophy by regulating X-inactive specific transcript (XIST) expression in rats. J Thorac Dis. 2022;14(6):2213–2223. doi:10.21037/jtd-22-606
  • Lu H, Du W, Ren L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J Am Heart Assoc. 2021;10(24):e023601. doi:10.1161/JAHA.121.023601
  • Gao J, Cao H, Hu G, et al. The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther. 2023;8(1):55. doi:10.1038/s41392-023-01325-7
  • Zou L, Xia PF, Chen L, Hou YY. XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm. BiosciRep. 2021;41(3):BSR20201810. doi:10.1042/BSR20201810
  • Bennett MR, Evan GI, Newby AC. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-gamma, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res. 1994;74(3):525–536. doi:10.1161/01.RES.74.3.525
  • Lyon C, Mill C, Tsaousi A, Williams H, George S. Regulation of VSMC behavior by the cadherin-catenin complex. Front Biosci (Landmark Ed). 2011;16(2):644–657. doi:10.2741/3711
  • Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci. 2018;25(1):11. doi:10.1186/s12929-018-0418-4
  • Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res. 2022;140:104299. doi:10.1016/j.mvr.2021.104299
  • Whitmarsh AJ, Davis RJ. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene. 2007;26(22):3172–3184. doi:10.1038/sj.onc.1210410
  • Li C, Wang T, Zhang C, Xuan J, Su C, Wang Y. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene. 2016;577(2):275–280. doi:10.1016/j.gene.2015.12.012
  • Wang L, Cheng X, Li H, et al. Quercetin reduces oxidative stress and inhibits activation of c-Jun N-terminal kinase/activator protein-1 signaling in an experimental mouse model of abdominal aortic aneurysm. Mol Med Rep. 2014;9(2):435–442. doi:10.3892/mmr.2013.1846
  • Wang L, Wang B, Li H, et al. Quercetin, a flavonoid with anti-inflammatory activity, suppresses the development of abdominal aortic aneurysms in mice. Eur J Pharmacol. 2012;690(1–3):133–141. doi:10.1016/j.ejphar.2012.06.018
  • Liang K, Cui M, Fu X, et al. LncRNA Xist induces arterial smooth muscle cell apoptosis in thoracic aortic aneurysm through miR-29b-3p/Eln pathway. Biomed Pharmacother. 2021;137:111163. doi:10.1016/j.biopha.2020.111163
  • Jana S, Hu M, Shen M, Kassiri Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp Mol Med. 2019;51(12):1–15. doi:10.1038/s12276-019-0286-3
  • Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection. Nat Rev Dis Primers. 2016;2:16071. doi:10.1038/nrdp.2016.71
  • Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2022;52(4):e13697. doi:10.1111/eci.13697
  • Wei R, Feng Y. Noncoding RNA in the regulation of acute aortic dissection: from profile to mechanism. Cardiovasc Ther. 2022;2022:2371401. doi:10.1155/2022/2371401
  • Sun J, Chen G, Jing Y, et al. LncRNA expression profile of human thoracic aortic dissection by high-throughput sequencing. Cell Physiol Biochem. 2018;46(3):1027–1041. doi:10.1159/000488834
  • Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71. doi:10.1016/j.dnarep.2016.04.008
  • Zhang X, Wu H, Mai C, Qi Y. Long Noncoding RNA XIST/miR-17/PTEN axis modulates the proliferation and apoptosis of vascular smooth muscle cells to affect stanford type A aortic dissection. J Cardiovasc Pharmacol. 2020;76(1):53–62. doi:10.1097/FJC.0000000000000835
  • Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. Cell Regen. 2021;10(1):25. doi:10.1186/s13619-021-00087-3
  • Oudit GY, Kassiri Z, Zhou J, et al. Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res. 2008;78(3):505–514. doi:10.1093/cvr/cvn041
  • Lai Y, Li J, Zhong L, et al. The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA. Clin Sci (Lond). 2019;133(13):1439–1455. doi:10.1042/CS20190156
  • Guo Y, Lip GY, Apostolakis S. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012;60(22):2263–2270. doi:10.1016/j.jacc.2012.04.063
  • Yao C, Veleva T, Scott L Jr, et al.. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–2242. doi:10.1161/CIRCULATIONAHA.118.035202
  • Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52(2):e12563. doi:10.1111/cpr.12563
  • Yan B, Liu T, Yao C, Liu X, Du Q, Pan L. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. Lab Invest. 2021;101(11):1427–1438. doi:10.1038/s41374-021-00635-0
  • Wang Y, Jin P, Liu J, Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci (Lond). 2019;133(17):1871–1881. doi:10.1042/CS20190558
  • Wang X, Li XL, Qin LJ. The lncRNA XIST/miR-150-5p/c-Fos axis regulates sepsis-induced myocardial injury via TXNIP-modulated pyroptosis. Lab Invest. 2021;101(9):1118–1129. doi:10.1038/s41374-021-00607-4
  • Xu J, Wang Q, Song YF, et al. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes. 2022;13(4):358–375. doi:10.4239/wjd.v13.i4.358
  • Han Y, Jin G, Pan M, et al. Integrated bioinformatics and validation of lncRNA-mediated ceRNA network in myocardial ischemia/reperfusion injury. J Immunol Res. 2022;2022:7260801. doi:10.1155/2022/7260801
  • Xu J, Li J, Xu X, et al. IncRNA XIST promotes cardiac fibrosis in mice with diabetic nephropathy via sponging miR-106a-5p to target RUNX1. Crit Rev Eukaryot Gene Expr. 2023;33(2):55–66. doi:10.1615/CritRevEukaryotGeneExpr.2022044404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.