160
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical treatment of the Mumford–Shah model for the inversion and segmentation of X-ray tomography data

&
Pages 907-933 | Received 04 Aug 2009, Accepted 16 Apr 2010, Published online: 08 Sep 2010

References

  • Natterer, F, 2001. The Mathematics of Computerized Tomography, Series: The Mathematics of Computerized Tomography. Vol. 32. Philadelphia, PA: SIAM; 2001, reprint of the 1986 original.
  • Shepp, LA, and Logan, BF, 1974. Reconstructing interior head tissue from X-ray transmission, Nucl. Sci. IEEE Trans. 21 (1) (1974), pp. 228–236.
  • Ramachandran, GN, and Lakshminarayanan, AV, 1971. Three-dimensional reconstructions from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms, Proc. Natl. Acad. Sci. US 68 (9) (1971), pp. 2236–2240.
  • Gordon, R, Bender, R, and Herman, GT, 1970. Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography, J. Theor. Biol. 29 (3) (1970), pp. 471–481.
  • Engl, HW, Hanke, M, and Neubauer, A, 1996. Regularization of Inverse Problems. Dortrecht: Kluwer Academic Publishers; 1996.
  • Kass, M, Witkin, A, and Terzopoulos, D, 1987. Snakes: Active contour models, Int. J. Comput. Vis. 1 (1987), pp. 321–331.
  • Caselles, V, Catté, F, Coll, T, and Dibos, F, 1993. A geometric model for active contours in image processing, Numer. Math. 66 (1) (1993), pp. 1–31.
  • Cohen, LD, and Kimmel, R, 1997. Global minimum for active contour models: A minimum path approach, Int. J. Comput. Vis. 24 (1) (1997), pp. 57–78.
  • Hintermüller, M, and Ring, W, 2003/04. A second order shape optimization approach for image segmentation, SIAM J. Appl. Math. 64 (2) (2003/04), pp. 442–467, (electronic).
  • Paragios, N, and Deriche, R, 2002. Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision, Int. J. Visual Commun. Image Rep. 13 (1–2) (2002), pp. 249–268.
  • Jehan-Besson, S, Barlaud, M, and Aubert, G, , Video object segmentation using eulerian region-based active contours, International Conference on Computer Vision, Vancouver, July 2001.
  • Jehan-Besson, S, Barlaud, M, and Aubert, G, , DREAM2S: Deformable regions driven by an Eulerian accurate minimization method for image and video segmentation, source: http://math1.unice.fr/gaubert/publications.html, November 2001.
  • Chan, TF, Sandberg, BY, and Vese, LA, 2000. Active Contours without Edges for Vector-Valued Images, J. Vis. Commun. Image Represent. 11 (2000), pp. 130–141.
  • Chan, TF, and Vese, LA, 2002. A multiphase level set framework for image segmentation using the mumford and Shah model, Int. J. Comput. Vis. 50 (3) (2002), pp. 271–293.
  • Hintermüller, M, and Ring, W, 2004. An inexact Newton-CG-type active contour approach for the minimization of the Mumford–Shah functional, J. Math. Imaging Vis. 20 (1–2) (2004), pp. 19–42.
  • Terzopoulos, D, 2003. Deformable models: classic, topology-adaptive and generalized formulations in Geometric Level Set Methods in Imaging, Vision, and Graphics. New York: Springer; 2003.
  • Osher, SJ, and Fedkiw, RP, 2002. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag; 2002.
  • Sethian, JA, 1999. Level Set Methods and Fast Marching Methods. Cambridge: Cambridge University Press; 1999.
  • Kolehmainen, V, Arridge, SR, Lionheart, WRB, Vauhkonen, M, and Kaipio, JP, 1999. Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data, Inverse Probl. 15 (1999), pp. 1375–1391.
  • Ramlau, R, and Ring, W, 2007. A Mumford–Shah level-set approach for the inversion and segmentation of X-ray tomography data, J. Comput. Phys. 221 (2) (2007), pp. 539–557.
  • Santosa, F, 1996. A level-set approach for inverse problems involving obstacles, ESAIM: Control, Optim. Calculus Variations 1 (1996), pp. 17–33.
  • Litman, A, Lesselier, D, and Santosa, F, 1998. Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set, Inverse Probl. 14 (3) (1998), pp. 685–706.
  • Ito, Kazufumi, Kunisch, K, and Li, Zhilin, 2001. Level-set function approach to an inverse interface problem, Inverse Probl. 17 (5) (2001), pp. 1225–1242.
  • Osher, S, and Santosa, F, 2001. Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys. 171 (1) (2001), pp. 272–288.
  • Ben Ameur, H, Burger, M, and Hackl, B, 2004. Level set methods for geometric inverse problems in linear elasticity, Inverse Probl. 20 (3) (2004), pp. 673–696.
  • Burger, M, 2004. Levenberg-Marquardt level set methods for inverse obstacle problems, Inverse Probl. 20 (1) (2004), pp. 259–282.
  • Hintermüller, M, and Ring, W, 2004. A level set approach for the solution of a state-constrained optimal control problem, Numer. Math. 98 (1) (2004), pp. 135–166.
  • Chan, TF, and Tai, Xue-Cheng, 2004. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys. 193 (1) (2004), pp. 40–66.
  • Dorn, O, Miller, EL, and Rappaport, CM, 2000. A shape reconstruction method for electromagnetic tomography using adjoin fields and level sets, Inverse Probl. 16 (5) (2000), pp. 1119–1156.
  • Dorn, O, 2002. Shape reconstruction in scattering media with voids using a transport model and level sets, Can. Appl. Math. Q. 10 (2) (2002), pp. 239–275.
  • Dorn, O, and Villegas, R, 2008. History matching of petroleum reservoirs using a level set technique, Inverse Probl. 24 (3) (2008), p. 035015, (29 pp).
  • McFadden, GB, Wheeler, AA, Braun, RJ, and Coriell, SR, 1993. Phase-field models for anisotropic interfaces, Phys. Rev. E. 48 (1993), pp. 2016–2024.
  • Caginalp, G, and Chen, X, 1992. "Phase field equations in the singular limit of sharp interface problems". In: The IMA Volumes in Mathematics and its Applications. Vol. 43. New York: Springer-Verlag; 1992. pp. 1–27.
  • Rondi, L, and Santosa, F, 2001. Enhanced electrical impedance tomography via the Mumford–Shah functional, ESAIM: COCV 6 (2001), pp. 517–538.
  • Chan, TF, and Vese, LA, 2000. A level set algorithm for minimizing the Mumford–Shah functional in image processing. UCLA CAM Report. Los Angeles: University of California; 2000. pp. 00–13.
  • Tsai, A, Yezzi, A, and Willsky, AS, 2001. Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Trans. Image Process. 10 (8) (2001), pp. 1169–1186.
  • Dautray, R, and Lions, JL, 1990. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Berlin-Heidelberg, New York: Springer-Verlag; 1990, With the collaboration of Michel Artola and Michel Cessenat, Transl. from French by John C. Amson.
  • Rieder, A, 2003. Keine Probleme mit inversen Problemen. Braunschweig: Friedr. Vieweg & Sohn; 2003.
  • Nečas, J, 1967. Les Méthodes Directes en Théorie des Équations Elliptiques. Paris: Masson; 1967.
  • Vohralík, M, 2005. On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H1, Numer. Funct. Anal. Optim. 26 (7–8) (2005), pp. 925–952.
  • Hoetzl, E, , Numerical treatment of a Mumford–Shah model for X-ray tomography, Ph.D. thesis, Institute for Mathematics, Karl Franzens University Graz, 2009.
  • Hackbusch, W, 1992. Elliptic Differential Equations. Berlin: Springer; 1992.
  • Sokołowski, J, and Zolésio, J-P, 1992. Introduction to Shape Optimization. Berlin: Springer-Verlag; 1992.
  • Delfour, MC, and Zolésio, J-P, 2001. Shapes and Geometries. Philadelphia, PA: SIAM; 2001.
  • Aubert, G, Barlaud, M, Faugeras, O, and Jehan-Besson, S, 2003. Image segmentation using active contours: Calculus of variations or shape gradients?, SIAM J. Appl. Math. 63 (6) (2003), pp. 2128–2154.
  • Ring, W, 2006. A Newton-type Total Variation Diminishing Flow, Proceedings of the CMA Conference on Image Processing and Related Inverse Problems. Oslo, Part II: Springer-Verlag; 2006. pp. 123–148.
  • Osher, S, and Sethian, JA, 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1) (1988), pp. 12–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.