337
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Thermal characterization of materials using Karhunen–Loève decomposition techniques – Part II. Heterogeneous materials

, &
Pages 1145-1174 | Received 30 Nov 2010, Accepted 13 Jan 2012, Published online: 15 Feb 2012

References

  • Shi, L, Zhoy, J, Kim, P, Batchtold, A, Majumdar, A, and McEuen, PL, 2009. Thermal probing of energy dissipation in current-carrying carbon nanotubes, J. Appl. Phys. 105 (2009), p. 104306.
  • Hinz, M, Marti, O, Gotsmann, B, Lantz, MA, and Düring, U, 2008. High resolution vacuum scanning thermal microscopy of HfO2 and SiO2, Appl. Phys. Lett. 92 (2008), p. 043122.
  • Puyoo, E, Grauby, S, Rampnoux, JM, Rouvière, E, and Dilhaire, S, 2011. Scanning thermal microscopy of individual silicon nanowires, J. Appl. Phys. 109 (2011), p. 024302.
  • Potier, J, 1994. Micrometric scale visualization of thermal waves by photoreflectance microscopy, Appl. Phys. Lett. 64 (1994), pp. 1618–1619.
  • Jumel, J, Lepoutre, F, Roger, JP, Neuer, G, Cataldi, M, and Enguehart, F, 2003. Microscopic thermal characterization of composites, Rev. Sci. Instrum. 74 (2003), pp. 537–539.
  • Le Houëdec, H, Rochais, D, Enguehard, F, Jumel, J, and Lepoutre, F, 2004. Microscopic thermal characterization at temperatures up to 1000°C by photoreflectance microscopy, Superlattices Microstruct. 35 (2004), pp. 401–408.
  • Jumel, J, Rochais, D, and Lepoutre, F, 2005. Photoreflectance characterization of functionally graded materials. Application to diffusion process analysis, J. Phys. IV France 125 (2005), pp. 93–96.
  • Mendioroz, A, Fuente-Dascal, R, Apiñaniz, E, and Salazar, A, 2009. Thermal diffusivity measurements of thin plates and filaments using lock-in thermography, Rew. Sci. Instrum. 80 (2009), pp. 0749004–1/9.
  • Philippi, I, Batsale, JC, Maillet, D, and Degiovanni, A, 1994. Traitement d’images infrarouges par transformation intégrale – Application à la mesure de la diffusivité thermique de matériaux hétérogènes par méthode flash, Rev. Gén. Thermique 33 (1994), pp. 486–496.
  • Philippi, I, Batsale, JC, Maillet, D, and Degiovanni, A, 1995. Measurement of thermal diffusivity through processing of infrared images, Rev. Sci. Instrum. 66 (1995), pp. 182–192.
  • Krapez, JC, Spagnolo, L, Frieβ, M, Maier, HP, and Neuer, G, 2004. Measurement of in- plane diffusivity in non-homogeneous slabs by applying flash thermography, Int. J. Thermal Sci. 43 (2004), pp. 967–977.
  • Batsale, JC, Battaglia, JL, and Fudym, O, 2004. Autoregressive algorithms and spatially random flash excitation for 2D non destructive evaluation with infrared cameras, Quant. InfraRed Thermogr. 1 (2004), pp. 5–20.
  • Barrio, EPalomo del, Dauvergne, JL, and Pradere, C, , Thermal characterization of materials using infrared thermography and Karhunen–Loève decomposition techniques – Part I. Homogeneous materials, Inverse Probl. Sci. Eng. (2012), available at http://dx.doi.org/10.1080/17415977.2012.658388.
  • Flach, GP, and Ozisik, MN, 1989. Inverse heat conduction problem of simultaneously estimating spatially varying thermal conduction and heat capacity per unit volume, Numer. Heat Transfer, Part A 16 (1989), pp. 249–266.
  • Huang, CH, and Ozisik, MN, 1990. A direct integration approach for simultaneously estimating spatially varying thermal conductivity and heat capacity, Int. J. Heat Fluif Flow 11 (1990), pp. 262–268.
  • Lesnic, D, Elliot, L, Ingham, DB, Clennell, B, and Knioe, RJ, 1999. The identification of the picewise homogeneous thermal conductivity of conductors subjected to a heat flow test, Int. J. Heat Mass Transf. 42 (1999), pp. 143–152.
  • Divo, E, Kassab, A, and Rodriguez, F, 2000. Characterization of space dependent thermal conductivity with a BEM-based genetic algorithm, Numer. Heat Transf., Part A 37 (2000), pp. 845–875.
  • Huang, CH, and Chin, SC, 2000. A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium, Int. J. Heat Mass Transf. 43 (2000), pp. 4061–4071.
  • Rodrigues, FA, Orlando, HRB, and Dulikravich, GS, 2004. Simultaneous estimation of spatially dependent diffusion coefficients and source term in a non linear 1D diffusion problem, Math. Comput. Simul. 66 (2004), pp. 409–424.
  • Naveira-Cotta, CP, Cotta, RM, and Orlando, HRB, 2011. Inverse analysis with integral transformed temperature fields: Identification of thermophysical properties in heterogeneous media, Int. J. Heat Mass Transf. 54 (2011), pp. 1506–1519.
  • Pradere, C, Toutain, J, Batsale, JC, Morikawa, E, and Hashimoto, T, 2009. Mirco-sacle thermography of freezing bilogical cells in view of cryopreservation, Quant. InfraRed Thermogr. 6 (2009), pp. 37–61.
  • Bamford, M, Florian, M, Vignoles, GL, and Batsale, JC, 2009. Global and local characterization of the thermal diffusivitites of SiCf/SiC composites with infrared thermography and flash method, Compos. Sci. Technol. 69 (2009), pp. 1131–1141.
  • Pradere, C, Hany, C, Toutain, J, and Batsale, JC, 2010. Thermal analysis for velocity, kinetics and enthalpy reaction measurements in microfluidic devices, Experiment. Heat Transf. 23 (2010), pp. 44–62.
  • Pearson, K, 1901. On lines planes of closes fit to system of points in space, London, Edinburgh, Dublin Philos. Mag. J. Sci. 2 (1901), pp. 559–572.
  • Hotteling, H, 1933. Analysis of complex statistical variables into principal components, J. Educ. Psychol. 24 (1933), pp. 417–441.
  • Karhunen, K, 1946. Uber lineare methoden füer wahrscheiniogkeitsrechnung, Ann. Acad. Sci. Fenn., Ser. A1, Math. Phys. 37 (1946), pp. 3–79.
  • Loève, MM, 1988. Probability Theory. Princeton, NJ: Van Nostrand; 1988.
  • Deprettere, F, 1988. SVD and Signal Processing: Algorithms, Analysis and Applications. Amsterdam: Elsevier Science; 1988.
  • Everitt, BS, and Dunn, G, 2001. Applied Multivariate Data Analysis. London: Arnold; 2001.
  • Everitt, BS, Landau, S, and Leese, M, 2001. Cluster Analysis. London: Arnold; 2001.
  • Berry, MW, Dumais, ST, and Obrien, GW, 1995. Using linear algebra for intelligent information-retrieval, SIAM Rev. 37 (1995), pp. 573–595.
  • Ait-Yahia, A, and Palomo del Barrio, E, 1999. Thermal systems modelling via singular value decomposition: Direct and modular approach, Appl. Math. Model. 23 (1999), pp. 447–468.
  • Ait-Yahia, A, and Palomo del Barrio, E, 2000. Numerical simplification method for state-space models of thermal systems, Numer. Heat Transf. Part B 37 (2000), pp. 201–225.
  • Palomo del Barrio, E, 2003. An efficient computational method for solving large-scale sensitivity problems, Numer. Heat Transf. Part B 43 (2003), pp. 353–372.
  • Dauvergne, JL, and Palomo del Barrio, E, 2009. A spectral method for low-dimensional description of melting/solidification within shape-stabilized phase change materials, Numer. Heat Transf. Part B 56 (2009), pp. 142–166.
  • Dauvergne, JL, and Palomo del Barrio, E, 2010. Toward a simulation-free P.O.D. approach for low-dimensional description of phase change problems, Int. J. Thermal Sci. 49 (2010), pp. 1369–1382.
  • Park, HM, and Jung, WS, 1999. On the solution of inverse heat transfer using the Karhunen–Loève Galerkin method, Int. J. Heat Mass Transf. 42 (1999), pp. 127–142.
  • Park, HM, and Jung, WS, 2001. The Karhunen–Loève Galerkin method for the inverse natural convection problems, Int. J. Heat Mass Transf. 44 (2001), pp. 155–167.
  • Palomo del Barrio, E, 2003. Multidimensional inverse heat conduction problems solution via Lagrange theory and model size reduction techniques, Inverse Probl. Engrg. 11 (2003), pp. 515–539.
  • Godin, A, Barrio, EPalomo del, Ahusborde, E, and Azaiez, M, , Materials microstructure retrieval using infrared thermography and singular values decomposition techniques, 3rd INTERPORE Conference, Bordeaux, March 29–31, 2011.
  • Roberts, AP, and Teubner, M, 1995. Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulations, Phys. Rev. E 51 (1995), pp. 4141–4154.
  • Xianfan, C, and Shutian, L, 2006. Topology description function based method for material design, Acta Mech. Solida Sin. 19 (2006), pp. 95–102.
  • Vel, SS, and Goupee, AJ, 2010. Multiscale thermoelastic analysis of random heterogeneous materials. Part I: Microstructure characterization and homogenization of material properties, Comput. Mater. Sci. 48 (2010), pp. 22–38.
  • Ljung, L, 1987. System Identification: Theory for the User. New York: Prentice Hall; 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.