424
Views
21
CrossRef citations to date
0
Altmetric
Articles

Rapid identification of material properties of the interface tissue in dental implant systems using reduced basis method

, , , &
Pages 1310-1334 | Received 11 Sep 2012, Accepted 02 Dec 2012, Published online: 21 Jan 2013

References

  • BranemarkPI, ZarbGA, AlbrektssonT. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago (IL): Quintessence; 1985.
  • CowinSC. Bone mechanics handbook. Boca Raton (FL): CRC Press; 2001.
  • OlivéJ, AparicioC. Periotest method as a measure of osseointegrated oral implant stability. Int. J. Oral Maxillofac. Implants. 1990;5:390–400.
  • SwainR, FaulknerG, RaboudJ, WolfaardtJ. A dynamic analytical model for impact evaluation of percutaneous implants. J. Biomech. Eng. 2008;130:13–26.
  • Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontology 2000. 2008;47:51–66.
  • HuangHM, PanLC, LeeSY, ChiuCL, FanKH, HoKN. Assessing the implant/bone interface by using natural frequency analysis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2000;90:285–291.
  • Lachmann S, Jäger B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part 1: an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin. Oral Impl. Res. 2006;17:75–79.
  • Lachmann S, Jäger B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part 2: peri-implant bone loss follow-up. An in vitro study with the PeriotestTM and OsstellTM instruments. Clin. Oral Impl. Res. 2006;17:80–84.
  • CapekL, SimunekA, SlezakR, DzanL. Influence of the orientation of the Osstell transducer during measurement of dental implant stability using resonance frequency analysis: a numerical approach. Med. Eng. Phys. 2009;31:764–769.
  • Deng B, Han X, Liu GR, Tan KBC. Prediction of elastic properties of the maxillary bone. Proceeding of WCCM VI in conjunction with APCOM’04, Computational Mechanics; 2004.
  • DengB, TanKBC, LuY, ZawK, ZhangJ, LiuGR, GengJP. Inverse identification of elastic modulus of dental implant-bone interfacial tissue using neural network and FEA model. Inverse Probl. Sci. Eng. 2009;17:1073–1083.
  • ZawK, LiuGR, DengB, TanKBC. Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network. J. Biomech. 2009;42:634–641.
  • NataliAN, MeroiEA, WilliamsKR, CalabreseL. Investigation of the integration process of dental implants by means of a numerical analysis of dynamic response. Dent. Mater. 1997;13:325–332.
  • DengB, TanKBC, LiuGR. Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis. Int. J. Oral Maxillofac. Implants. 2008;23:1082–1088.
  • RozzaG, HuynhDBP, PateraAT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics. Arch. Comput. Methods Eng. 2008;15:229–275.
  • HuynhDBP, PateraAT. Reduced basis approximation and a posteriori error estimation for stress intensity factors. Int. J. Numer. Methods Eng. 2007;72:1219–1259.
  • Grepl MA, Patera AT. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM. Math. Model. Numer. Anal. (M2AN). 2005;39:157–181.
  • Tan AYK. Reduced basis methods for 2nd order wave equation: application to one dimensional seismic problem [Master thesis]. Singapore-MIT Alliance, National University of Singapore; 2006.
  • NguyenNC, RozzaG, PateraAT. Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation. Calcolo. 2009;46:157–185.
  • VeroyK, PateraAT. Certified real-time solution of the parametrized steady incompressible NavierûStokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids. 2005;47:773–788.
  • LiuGR, ZawK, WangYY, DengB. A novel reduced-basis method with upper and lower bounds for real-time computation of linear elasticity problems. Comput. Methods Appl. Mech. Eng. 2008;198:269–279.
  • LiuGR, LeeJH, PateraAT, YangZL, LamKY. Inverse identification of thermal parameters using reduced-basis method. Comput. Methods Appl. Mech. Eng. 2005;194:3090–3107.
  • SawafB, ÖzisikMN, JarnyY. An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium. Int. J. Heat Mass Transfer. 1995;38:3005–3010.
  • TangDW, ArakiN. An inverse analysis to estimate relaxation parameters and thermal diffusivity with a universal heat conduction equation. Int. J. Thermophys. 2000;21:553–561.
  • SchnurDS, ZabarasN. An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Eng. 1992;33:2039–2057.
  • ZhaoKM, LeeJK. Inverse estimation of material properties for sheet metals. Commun. Numer. Methods Eng. 2004;20:105–118.
  • WangS, LiuGR, HoangKC, GuoY. Identifiable range of osseointegration of dental implants through resonance frequency analysis. Med. Eng. Phys. 2010;32:1094–1106.
  • HughesTJR. The finite element method: linear static and dynamic finite element analysis. Englewood Cliffs (NJ): Prentice-Hall; 1987.
  • DanielWJT. The subcycled Newmark algorithm. Comput. Mech. 1997;20:272–281.
  • Patera AT. RB website (augustine); 2007. Available from: http://augustine.mit.edu/methodology.htm
  • NguyenNC. A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 2008;227:9807–9822.
  • Haasdonk B, Ohlberger M. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM. Math. Model. Numer. Anal. (M2AN). 2008;42:277–302.
  • HuynhDBP, KnezevicDJ, PateraAT. A Laplace transform certified reduced basis method; application to the heat equation and wave equation. C. R. Math. 2011;349:401–405.
  • Fletcher R. A modified Marquardt subroutine for nonlinear least squares. Tech. Rep. AERE-R-6799. Harwell (UK): Atomic Energy Research Establishment; 1971.
  • Balda M. An algorithm for nonlinear least squares. Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v.v.i., 2010. Available from: http://dsp.vscht.cz/konference_matlab/MATLAB07/prispevky/balda_m/balda_m.pdf
  • XuYG, LiuGR. Detection of flaws in composites from scattered elastic-wave field using an improved μGA and a local optimizer. Comput. Methods Appl. Mech. Eng. 2002;191:3929–3946.
  • JacksonJE. A User’s Guide to Principal Components. Hoboken (NJ): John Wiley & Sons; 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.