376
Views
12
CrossRef citations to date
0
Altmetric
Articles

A Gauss–Newton full-waveform inversion for material profile reconstruction in viscoelastic semi-infinite solid media

, &
Pages 393-421 | Received 29 Jul 2014, Accepted 04 Apr 2015, Published online: 03 Jun 2015

References

  • Becache E, Ezziani A, Joly P. A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 2004;8:255–299.
  • Becache E, Joly P, Tsogka C. A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 2002;39:2109–2132.
  • Ma S, Liu P. Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull. Seismol. Soc. Am. 2006;96:1779–1794.
  • Day SM. Efficient simulation of constant Q using coarse-grained memory variables. Bull. Seismol. Soc. Am. 1998;88:1051–1062.
  • Ely GP, Day SM, Minster JB. A support-operator method for viscoelastic wave modelling in 3-D heterogeneous media. Geophys. J. Int. 2008;172:331–344.
  • Martin R, Komatitsch D. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys. J. Int. 2009;179:333–344.
  • Dhemaied A, Rejiba F, Camerlynck C, Bodet L, Guerin R. Seismic-wave propagation modeling in viscoelastic media using the auxiliary differential equation method. Bull. Seismol. Soc. Am. 2011;101:413–420.
  • Carcione JM. Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophys. J. Int. 1990;101:739–750.
  • Yan HY, Liu Y. High-order finite-difference numerical modeling of wave propagation in viscoelastic tti media using rotated staggered grid. Chin. J. Geophys. 2012;55:252–265.
  • Assimaki D, Kallivokas LF, Kang JW, Li W, Kucukcoban S. Time-domain forward and inverse modeling of lossy soils with frequency-independent Q for near-surface applications. Soil Dyn. Earthquake Eng. 2012;43:139–159.
  • Kang JW, Kallivokas LF. Mixed unsplit-field perfectly matched layers for transient simulations of scalar waves in heterogeneous domains. Comput. Geosci. 2009;14:623–648.
  • Brezzi F, Fortin M. Mixed and hybrid finite element methods. New York (NY): Springer; 1991.
  • Tikhonov A. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963;4:1035–1038.
  • Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. 1993;60:259–268.
  • Akcelik V. 2002. Multiscale Newton--Krylov methods for inverse acoustic wave propagation [Ph.d. dissertation].
  • Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia (PA): SIAM; 2003.
  • Akcelik V, Biros G, Ghattas O. Parallel multiscale Gauss--Newton--Krylov methods for inverse wave propagation. Proceedings of the 2002 ACM/IEEE Conference on Supercomputing; 2002; Baltimore (MD): ACM Digital Library; p. 1–15.
  • Askan A, Akcelik V, Bielak J, Ghattas O. Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures. Bull. Seismol. Soc. Am. 2007;97:1990–2008.
  • Epanomeritakis I, Akcelik V, Ghattas O, Bielak J. A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion. Inverse Prob. 2008;24:034015.
  • Erlangga YA, Herrmann FJ. Seismic waveform inversion with Gauss–Newton–Krylov method. SEG Technical Program Expanded Abstracts. SEG Annual Meeting; 2009 October; Houston, TX. Vol. 28; p. 2357–2361.
  • Pakravan A, Kang JW. A Gauss–Newton full-waveform inversion for material profile reconstruction in 1D PML-truncated solid media. KSCE J. Civ. Eng. 2014;18:1792–1804.
  • Eisenstat SC, Walker HF. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 1996;17:16–32.
  • Nocedal J, Wright S. Numerical optimization. New York (NY): Springer; 1999.
  • Kang JW, Kallivokas LF. The inverse medium problem in 1D PML-truncated heterogeneous semi-infinite domains. Inverse Prob. Sci. Eng. 2010;18:759–786.
  • Kang JW, Kallivokas LF. The inverse medium problem in heterogeneous PML-truncated domains using scalar probing waves. Comput. Methods Appl. Mech. Eng. 2011;200:265–283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.