485
Views
8
CrossRef citations to date
0
Altmetric
Articles

Inverse identification of impact locations using multilayer perceptron with effective time-domain feature

, , , & ORCID Icon
Pages 443-461 | Received 24 Jun 2016, Accepted 03 Apr 2017, Published online: 20 Apr 2017

References

  • Sanchez J, Benaroya H. Review of force reconstruction techniques. J Sound Vib. 2014;333:2999–3018.10.1016/j.jsv.2014.02.025
  • Huang J, Qin L, Peng X, et al. Cellular traction force recovery: an optimal filtering approach in two-dimensional Fourier space. J Theor Biol. 2009;259:811–819.10.1016/j.jtbi.2009.05.005
  • Jiang X, Hu H. Reconstruction of distributed dynamic loads on a thin plate via mode-selection and consistent spatial expression. J Sound Vib. 2009;323:626–644.10.1016/j.jsv.2009.01.008
  • Xu S, Deng X, Tiwari V, et al. An inverse approach for pressure load identification. Int J Impact Eng. 2010;37:865–877.10.1016/j.ijimpeng.2009.10.007
  • Liu Y, Shepard WS. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. J Sound Vib. 2005;282:37–60.10.1016/j.jsv.2004.02.041
  • Kim S-J, Lee S-K. Experimental identification for inverse problem of a mechanical system with a non-minimum phase based on singular value decomposition. J Mech Sci Technol. 2008;22:1504–1509.10.1007/s12206-008-0312-1
  • Thite A, Thompson D. The quantification of structure-borne transmission paths by inverse methods. Part 1: improved singular value rejection methods. J Sound Vib. 2003;264:411–431.10.1016/S0022-460X(02)01202-6
  • Thite A, Thompson D. The quantification of structure-borne transmission paths by inverse methods. Part 2: Use of regularization techniques. J Sound Vib. 2003;264:433–451.10.1016/S0022-460X(02)01203-8
  • Gaul L, Hurlebaus S. Identification of the impact location on a plate using wavelets. Mech Syst Signal Process. 1998;12:783–795.10.1006/mssp.1998.0163
  • Coverley P, Staszewski W. Impact damage location in composite structures using optimized sensor triangulation procedure. Smart Mater Struct. 2003;12:795.10.1088/0964-1726/12/5/017
  • Kundu T, Das S, Martin SA, et al. Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics. 2008;48:193–201.10.1016/j.ultras.2007.12.001
  • Park J-H, Kim Y-H. Impact source localization on an elastic plate in a noisy environment. Meas Sci Technol. 2006;17:2757–2766.10.1088/0957-0233/17/10/030
  • Liang D. Distributed coordination algorithm for impact location of preciseness and real-time on composite structures. Measurement. 2013;46:527–536.10.1016/j.measurement.2012.08.011
  • Doyle JF. A wavelet deconvolution method for impact force identification. Exp Mech. 1997;37:403–408.10.1007/BF02317305
  • Huang H, Pan J, McCormick P. Prediction of impact forces in a vibratory ball mill using an inverse technique. Int J Impact Eng. 1997;19:117–126.10.1016/S0734-743X(96)00018-8
  • Zhu T, Xiao S-n, Yang G-w. Force identification in time domain based on dynamic programming. Appl Math Comput. 2014;235:226–234.10.1016/j.amc.2014.03.008
  • Yan G, Zhou L. Impact load identification of composite structure using genetic algorithms. J Sound Vib. 2009;319:869–884.10.1016/j.jsv.2008.06.051
  • Park SO, Jang BW, Lee YG, et al. Detection of impact location for composite stiffened panel using FBG sensors. Adv Mater Res. 2010;123–125:895–898.10.4028/www.scientific.net/AMR.123-125
  • LeClerc J, Worden K, Staszewski W, et al. Impact detection in an aircraft composite panel – A neural-network approach. J Sound Vib. 2007;299:672–682.10.1016/j.jsv.2006.07.019
  • Ghajari M, Sharif-Khodaei Z, Aliabadi M, et al. Identification of impact force for smart composite stiffened panels. Smart Mater Struct. 2013;22:085014.10.1088/0964-1726/22/8/085014
  • Chandrashekhara K, Okafor AC, Jiang Y. Estimation of contact force on composite plates using impact-induced strain and neural networks. Compos Part B: Eng. 1998;29:363–370.10.1016/S1359-8368(98)00003-1
  • Jones RT, Sirkis JS, Friebele E. Detection of impact location and magnitude for isotropic plates using neural networks. J Intell Mater Syst Struct. 1997;8:90–99.10.1177/1045389X9700800109
  • Lepore FP, Santos MB, Barreto RG. Identification of rotary machines excitation forces using wavelet transform and neural networks. Shock Vib. 2002;9:235–244.10.1155/2002/967638
  • Sharif-Khodaei Z, Ghajari M, Aliabadi M. Determination of impact location on composite stiffened panels. Smart Mater Struct. 2012;21:105026.10.1088/0964-1726/21/10/105026
  • Ghajari M, Sharif Khodaei Z, Aliabadi M. Impact detection using artificial neural networks. Key Eng Mater. 2012;488:767–770.
  • Worden K, Staszewski W. Impact location and quantification on a composite panel using neural networks and a genetic algorithm. Strain. 2000;36:61–68.10.1111/str.2000.36.issue-2
  • Mohamed Ramli N, Hussain MA, Mohamed Jan B, et al. Composition prediction of a debutanizer column using equation based artificial neural network model. Neurocomputing. 2014;131:59–76.10.1016/j.neucom.2013.10.039
  • Razavi S, Jumaat M, Ahmed H, et al. Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar. Comput concrete. 2012;10:379–390.10.12989/cac.2012.10.4.379
  • Birgul Egeli A. Stock market prediction using artificial neural networks. Decis Support Syst. 2003;22:171–85.
  • Karunanithi N, Grenney WJ, Whitley D, et al. Neural networks for river flow prediction. J Comput Civil Eng. 1994;8:201–220.10.1061/(ASCE)0887-3801(1994)8:2(201)
  • Hakim S, Razak HA. Modal parameters based structural damage detection using artificial neural networks–a review. Smart Struct Syst. 2014;14:159–189.10.12989/sss.2014.14.2.159
  • Haywood J, Coverley P, Staszewski W, et al. An automatic impact monitor for a composite panel employing smart sensor technology. Smart Mater Struct. 2004;14:265–271.
  • Maseras-Gutierrez M, Staszewski WJ, Found MS, et al. Detection of impacts in composite materials using piezoceramic sensors and neural networks. Proc SPIE. 1998;3329:491–497.10.1117/12.316918
  • Graff KF. Wave motion in elastic solids. New York (NY): Courier Corporation; 1975.
  • Shin SW, Yun CB, Popovics JS, et al. Improved Rayleigh wave velocity measurement for nondestructive early-age concrete monitoring. Res Nondestr Eval. 2007;18:45–68.10.1080/09349840601128762
  • Sansalone M, Carino NJ, Hsu NN. Review of progress in quantitative nondestructive evaluation. Rev Prog Quantitative Nondestructive Evaluation: Springer; 1987. p. 125–33.10.1007/978-1-4613-1893-4
  • Sansalone M, Lin Y, Carino NJ. Impact-echo response of plates containing thin layers and voids. In: D. Thompson and D. Chimenti, editor. Review of progress in quantitative nondestructive evaluation. Brunswick (ME): Springer; 1990. p. 1935–1942.10.1007/978-1-4684-5772-8
  • Sansalone M, Carino NJ, Hsu NN. A finite element study of transient wave propagation in plates. J Res Nat Bur Stand. 1987;92:267–78.10.6028/jres.092.025
  • Hecht-Nielsen R Kolmogorov’s mapping neural network existence theorem. In Proceedings of the international conference on Neural Networks. Vol. 3. New York: IEEE Press; 1987. p. 11–13.
  • Demuth H, Beale M, Hagan M. Neural network toolbox™ 6: User’s guide. Natick, MA: The MathWorks™; 2008.
  • Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks. 1994;5:989–993.10.1109/72.329697
  • Choose a Multilayer Neural Network Training Function [Internet]. Natick (MA): The MathWorks™; 2016, c1994–2016 [updated 2016 Oct 5; cited 2016 Oct 29]. Available from: https://www.mathworks.com/help/nnet/ug/choose-a-multilayer-neural-network-training-function.html
  • Khoo S, Ismail Z, Kong K, et al. Impact force identification with pseudo-inverse method on a lightweight structure for under-determined, even-determined and over-determined cases. Int J Impact Eng. 2014;63:52–62.10.1016/j.ijimpeng.2013.08.005
  • Huk M. Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network. Int J Appl Math Comput Sci. 2012;22:449–59.
  • Huk M. Learning distributed selective attention strategies with the Sigma-if neural network. In: Akbar M, Hussain D, editors. Advances in computer science and IT. Vukovar: InTech; 2009. p. 209–232.
  • Specht DF. A general regression neural network. IEEE Trans Neural Networks. 1991;2:568–576.10.1109/72.97934
  • Brown J, Anwar M, Dozier G. An evolutionary general regression neural network classifier for intrusion detection. In: 25th International Conference on Computer Communication and Networks (ICCCN); 2016 Aug 1–4; Waikoloa (HI): Proceedings of the IEEE; 2016. p. 1–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.