200
Views
4
CrossRef citations to date
0
Altmetric
Articles

Improved integral formulae for supersonic reconstruction of the acoustic field

Pages 898-924 | Received 24 Mar 2017, Accepted 15 Aug 2017, Published online: 08 Sep 2017

References

  • Williams EG. Fourier acoustics: sound radiation and nearfield acoustical holography. London: Academic Press; 1999.
  • Williams EG. Supersonic acoustic intensity. J Acoust Soc Am. 1995 Jan;97(1):121–127.
  • Williams EG. Supersonic acoustic intensity on planar sources. J Acoust Soc Am. 1998 Nov;104(5):2845–2850.
  • Fernandez-Grande E, Jacobsen F, Leclère Q. Direct formulation of the supersonic acoustic intensity in space domain. J Acoust Soc Am. 2012 Jan;131(1):186–193.
  • Williams EG. Convolution formulations for non-negative intensity. J Acoust Soc Am. 2013;134(2):1055–1066.
  • Magalhâes M, Tenenbaum R. Supersonic acoustic intensity for arbitrarily shaped sources. Acta Acustica. 2006;92:189–201.
  • Tenenbaum R, Magalhâes M. A new technique to identify arbitrarily shaped noise sources. Shock Vibr. 2006;13:219–232.
  • Correa C, Tenenbaum R. Useful intensity: a technique to identify radiating regions on arbitrarily shaped surfaces. J Sound Vibr. 2013;332:1567–1584.
  • Marburg S, Lösche E, Herwig P, et al. Surface contributions to radiated sound power. J Acoust Soc Am. 2013 Jun;133(6):3700–3705.
  • Valdivia NP, Williams EG, Herdic PC. Equivalent sources method for supersonic intensity of arbitrarily shaped geometries. J Sound Vibr. 2015;347:46–62.
  • Valdivia NP. Integral formulas for supersonic reconstruction of the acoustic field. Inverse Prob Sci Eng. Fourthcoming 2017. doi:10.1080/17415977.2017.1309399
  • Morse PM, Ingard K. Theoretical acoustics. New York (NY): McGraw-Hill Book Company; 1968.
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. 3rd ed., Berlin: Springer; 2013. (Applied mathematical sciences; vol. 93).
  • DeLillo TK, Isakov V, Valdivia N, et al. The detection of the source of acoustical noise in two dimensions. SIAM J Appl Math. 2001;61(6):2104–2121.
  • DeLillo TK, Isakov V, Valdivia N, et al. The detection of surface vibrations from interior acoustical pressure. Inverse Prob. 2003;19(3):507–524.
  • Valdivia N, Williams EG. Implicit methods of solution to integral formulations in boundary element methods based near-field acoustic holography. J Acoust Soc Am. 2004 Sep;116(3):1559–1572.
  • Vlahopoulos N, Raveerdra ST. Formulation, implementation and validation of multiple connection and free edge constraints in a indriect boundary element formulation. J Sound Vibr. 1998;201:137–152.
  • Schuhmacher A, Hald J, Rasmussen KB, et al. Sound source reconstruction using inverse boundary element calculations. J Acoust Soc Am. 2003;113(1):114–126.
  • Burton A, Miller G. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc Roy Soc London Ser A, Math Phys Sci. 1971;323:201–210.
  • Fahy F, Gardonio P. Sound and structural vibration: radiation, transmision and response. New York (NY): Elsevier/Academic; 2007.
  • Isakov V, Wu SF. On theory and application of the helmholtz equation least squares method in inverse acoustics. Inverse Prob. 2002;18:1147–1159.
  • Williams EG, Maynard JD. Holographic imaging without the wavelength resolution limit. Phys Rev Lett. 1980;45:554–557.
  • Colton D, Kress R. Integral equation methods in scattering theory. New York (NY): Wiley-Interscience Publication; 1983.
  • McLean W. Strongly elliptic systems and boundary integral equations. New York (NY): Cambridge University Press; 2000.
  • Stratton JA. Electromagnetic theory. New York (NY): Wiley; 1941. (IEEE press series on electromagnetic wave theory).
  • Valdivia N, Williams EG. Krylov subspace iterative methods for boundary element method based near-field acoustic holography. J Acoust Soc Am. 2005 Feb;117(2):711–724.
  • Valdivia NP. Numerical methods for near-field acoustic holography over arbitrarily shaped surfaces. In: Monroy FA, editor. Holography: different field of application. Rijeka, Croatia: InTech; 2011.
  • Hickling R. Analysis of echoes from solid elastic sphere in water. J Acoust Soc Am. 1962 Oct;34(10):1582–1592.
  • Hickling R. Analysis of echoes fwater hollow metallic sphere in water. J Acoust Soc Am. 1964 Jun;36(6):1582–1592.
  • Ammari H, Garnier J, Jing W, et al. Mathematical and statistical methods for multistatic imaging. 1st ed., Vol. 2098. Basel: Springer International Publishing; 2013.
  • Devaney A, Marengo E, Li M. Inverse source problem in nonhomogeneous background media. SIAM J Appl Math. 2007;67(5):1353–1378.
  • Badia AE, Nara T. An inverse source problem for helmholtz’s equation from the cauchy data with a single wave number. Inverse Prob. 2011 Oct;27(10):105001.
  • Faran JJ. Sound scattering by solid cylinders and spheres. J Acoust Soc Am. 1951 Jul;23(4):405–418.
  • Hampton L, McKinney C. Experimental study of the scattering of acoustic energy from solid metal spheres in water. J Acoust Soc Am. 1961;33(5):664–673.
  • Goodman RR, Stern R. Reflection and transmission of sound by elastic spherical shells. J Acoust Soc Am. 1962 Mar;34(3):338–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.