389
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Optical property inversion of biological materials using Fourier series expansion and LS-SVM for hyperspectral imaging

, , &
Pages 1019-1036 | Received 14 Dec 2016, Accepted 04 Sep 2017, Published online: 21 Sep 2017

References

  • Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:R61–R109.10.1088/0031-9155/53/9/R01
  • Choi JH, Wolf M, Toronov V, et al. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt. 2004;9:221–229.10.1117/1.1628242
  • Cen H, Lu R, Mendoza F, et al. Assessing multiple quality of peaches using optical absorption and scattering properties. Trans ASABE. 2012;55:647–657.10.13031/2013.41366
  • Qin J, Lu R, Peng Y. Prediction of Apple Internal Quality Using Spectral Absorption and Scattering Properties. Trans ASABE. 2009;52:499–507.10.13031/2013.26807
  • Cen H, Lu R, Dolan K. Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance. Inverse Probl Sci Eng. 2010;18:853–872.10.1080/17415977.2010.492516
  • Qin J, Lu R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Tech. 2008;49:117–128.
  • Lu R, Peng Y. Hyperspectral scattering for assessing peach fruit firmness. Biosyst Eng. 2006;93:161–171.10.1016/j.biosystemseng.2005.11.004
  • Lu R, Ariana D, Cen H. Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000 nm. Sens Instr Food Qual. 2011;5:51–56.10.1007/s11694-011-9108-6
  • Pham TH, Bevilacqua F, Spott T, et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl Opt. 2000;39:6487–6497.10.1364/AO.39.006487
  • Saeys W, Velazco-Roa MA, Thennadil SN, et al. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm. Appl Opt. 2008;47:908–919.10.1364/AO.47.000908
  • Tseng TY, Chen CY, Li YS, et al. Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Biomed Opt Exp. 2011;2:901–914.10.1364/BOE.2.000901
  • Farrell TJ, Patterson MS, Wilson B. A diffusion-theory model of spatially-resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys. 1992;19:879–888.10.1118/1.596777
  • Hayakawa CK, Hill BY, You JS, et al. Use of the δ-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media. Appl Opt. 2004;43:4677–4684.10.1364/AO.43.004677
  • Hull EL, Foster TH. Steady-state reflectance spectroscopy in the P3 approximation. J Opt Soc Am A. 2001;18:584–599.10.1364/JOSAA.18.000584
  • Chai C, Luo Q, Liu Q. Analytical solution of P3 approximation to radiative transfer equation for an infinite homogenous media and its validity. J Mod Optic. 2008;55:3611–3624.10.1080/09500340802372801
  • Seo I, Hayakawa CK, Venugopalan V. Radiative transport in the delta-P1 approximation for semi-infinite turbid media. Med Phys. 2008;35:681–693.10.1118/1.2828184
  • Zhang L, Wang Z, Zhou M. Determination of the optical coefficients of biological tissue by neural network. J Mod Optic. 2010;57:1163–1170.10.1080/09500340.2010.500106
  • Chen J, Quan W, Cui T, et al. Remote sensing of absorption and scattering coefficient using neural network model: development, validation, and application. Remote Sens Environ. 2014;149:213–226.10.1016/j.rse.2014.04.013
  • Zhao X, Zhu Q, Huang M, et al. An IGA-PLSP method for FT-NIR wavelength selection for measuring soluble solid content of citrus fruits. Anal Methods. 2013;5:4811–4817.10.1039/c3ay40916c
  • Zhu Q, Huang M, Lu R, et al. Analysis of hyperspectral scattering images using a moment method for apple firmness prediction. Trans ASABE. 2014;57:75–83.
  • Barman I, Dingari NC, Rajaram N, et al. Rapid and accurate determination of tissue optical properties using least-squares support vector machines. Biomed Opt Exp. 2011;2:592–599.10.1364/BOE.2.000592
  • Mendoza F, Lu R, Ariana R, et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol Tech. 2011;62:149–160.
  • Veer K. A technique for classification and decomposition of muscle signal for control of myoelectric prostheses based on wavelet statistical classifier. Measurement. 2015;60:283–291.10.1016/j.measurement.2014.10.023
  • Muñoz Morales AA, Vázquez y Montiel SV. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application. Biomed Opt Express. 2012;3:2395–2404.10.1364/BOE.3.002395
  • Budiastra IW, Ikeda Y, Nishizu T. Optical methods for quality evaluation of fruits (part 1): – optical properties of selected fruits using the Kubelka-Munk theory and their relationships with fruit maturity and sugar content. J Jpn Soc Agri Mach. 1998;60:117–128.
  • Cubeddu R, D’Andrea C, Pifferi A, et al. Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples. Appl Spectrosc. 2001;55:1368–1374.10.1366/0003702011953496
  • Wang L, Jacques S, Zheng L. MCML-Monte Carlo modeling of light transport in multilayered tissues. Comput Methods Programs Biomed. 1995;47:131–146.10.1016/0169-2607(95)01640-F
  • Bender JE, Vishwanath K, Moore LK, et al. A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo. IEEE Trans Biomed Eng. 2009;56:960–968.10.1109/TBME.2008.2005994
  • Mourant JR, Fuselier T, Boyer J, et al. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl Opt. 1997;36:949–957.10.1364/AO.36.000949
  • Qin J, Lu R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc. 2007;61:388–396.10.1366/000370207780466190
  • Bernard K, Keith S, George M, et al. Rapid estimation of soil engineering properties using diffuse reflectance near infrared spectroscopy. Biosyst Eng. 2014;121:177–185.
  • Theresa K, Andreas P, Joachim I, et al. Detection of postharvest quality loss in broccoli by means of non-colorimetric reflection spectroscopy and hyperspectral imaging. Comput Electron Agr. 2015;118:322–331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.