370
Views
4
CrossRef citations to date
0
Altmetric
Articles

Left-handed lens tomography and holography

Pages 296-313 | Received 13 Aug 2018, Accepted 21 Nov 2018, Published online: 06 Dec 2018

References

  • Veselago VG. The electrodynamics of substances with simultaneously negative values of and μ. Sov Phys Uspekhi. 1968;10:509–514. (in Russian). doi: 10.1070/PU1968v010n04ABEH003699
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85:3966–3969. doi: 10.1103/PhysRevLett.85.3966
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–4187. doi: 10.1103/PhysRevLett.84.4184
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77–79. doi: 10.1126/science.1058847
  • Ziolkowski RW. Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag. 2003;51:1516–1529. doi: 10.1109/TAP.2003.813622
  • Zhao H, Kang L, Zhou J, et al. Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. Appl Phys Lett. 2007;93:201106-1–201106-3.
  • Turkmen O, Ekmekci E, Turhan-Sayan G. Nested U-ring resonators: a novel multi-band metamaterial design in microwave region. IET Microwaves Antennas Propag. 2012;6(10):1102–1108. doi: 10.1049/iet-map.2012.0037
  • Islam SS, Faruque MRI, Islam MT. The design and analysis of a novel split-h-shaped metamaterial for multi-band microwave applications. Materials (Basel). 2014;7:4994–5011. doi: 10.3390/ma7074994
  • Liu Y, Zhou X, Song K, et al. Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial. Appl Phys Lett. 2014;105(20):201911-1–101911-4.
  • Hasan MM, Faruque MRI, Islam SS, et al. A new compact double-negative miniaturized metamaterial for wideband operation. Materials (Basel). 2016;9:830. doi: 10.3390/ma9100830
  • Zhou H, Wang C, Peng H. A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure. J Mater Sci: Mater Electron. 2016;27(3):2534–2544.
  • Li S, Elsherbeni AZ, Yu W, et al. A novel tunable dual-band left-handed metamaterial. J Magn. 2017;22(4):610–616. doi: 10.4283/JMAG.2017.22.4.610
  • Khoo C, Werner DH, Liang X, et al. Nanosphere dispersed liquid crystals for tunable negative–zero–positive index of refraction in the optical and terahertz regimes. Opt Lett 2006;31:2592–2594. doi: 10.1364/OL.31.002592
  • Shadrivov IV, Morrison SK, Kivshar YS. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt Exp. 2006;14:9344–9349. doi: 10.1364/OE.14.009344
  • Kang L, Zhao Q, Li B, et al. Experimental verification of a tunable optical negative refraction in nematic liquid crystals. Appl Phys Lett. 2007;90:181931-1–181931-3.
  • Xiong YI, Liu ZH, Durant S, et al. Tuning the far-field superlens: from UV to visible. Opt Exp. 2007;15(12):7095–7102. doi: 10.1364/OE.15.007095
  • Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett. 2009;95:084105-1–084105-3. doi: 10.1063/1.3211920
  • Minovich A, Neshev DN, Powell DA, et al. Tunable fishnet metamaterials infiltrated by liquid crystals. Appl Phys Lett. 2010;96:193103-1–193103-3. doi: 10.1063/1.3427429
  • Ekmekci E, Strikwerda AC, Fan K, et al. Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators. Phys Rev B. 2011;83:193103-1–193103-3. doi: 10.1103/PhysRevB.83.193103
  • Xu H-X, Wang G-M, Zhang C-X, et al. Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry. Photon Nanostruct – Fundam Appl. 2013;11(1):15–28. doi: 10.1016/j.photonics.2012.06.011
  • Dolling G, Wegener M, Soukoulis CM, et al. Negative-index metamaterial at 780 nm wavelength. Appl Phys Lett. 2007;91:191103-1–191103-3.
  • Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science. 2011;331:290–291. doi: 10.1126/science.1198258
  • Khorasaninejad M, Chen WT, Devlin RC, et al. Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194. doi: 10.1126/science.aaf6644
  • Ishii X, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl Nano Lett. 2012;13:159–163.
  • Glybovski SB, Tretyakov SA, Belov PA, et al. Metasurfaces: from microwaves to visible. Phys Rep. 2016;634:1–72. doi: 10.1016/j.physrep.2016.04.004
  • Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11:917–924. doi: 10.1038/nmat3431
  • Zhao L, Cui TJ. Super-resolution imaging of dielectric objects using a slab of left-handed material. Appl Phys Lett. 2006;89:141904-1–141904-3.
  • Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Exp. 2006;14:8247–8256. doi: 10.1364/OE.14.008247
  • Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys Rev B. 2006;74:075103-1–075103-5. doi: 10.1103/PhysRevB.74.075103
  • Aydin K, Ozbay E. Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves. Appl Phys A. 2007;87:137–141. doi: 10.1007/s00339-006-3817-4
  • Gaikovich KP, Gaikovich PK. Inverse problem of near-field scattering in multilayer media. Inverse Probl. 2010;26(12):125013-1–125013(17). doi: 10.1088/0266-5611/26/12/125013
  • Podolskiy VA, Narimanov EE. Near-sighted superlens. Opt Lett. 2005;30:75–77. doi: 10.1364/OL.30.000075
  • Chang D, Ran L, Xin H. Microwave gain medium with negative refractive index. Nat Commun. 2014;5:5841-1–5841-7.
  • Govyadinov AA, Podolskiy VA, Noginov MA. Active metamaterials: sign of refractive index and gain-assisted dispersion management. Appl Phys Lett. 2007;91:191103-1–191103-3. doi: 10.1063/1.2800309
  • Monzon C, Forester DW. Negative refraction and focusing of circularly polarized waves in optically active media. Phys Rev Lett. 2005;95:123904-1–123904-4. doi: 10.1103/PhysRevLett.95.123904
  • Soukoulis CM, Wegener M. Optical metamaterials – more bulky and less lossy. Science. 2010;330:1633–1634. doi: 10.1126/science.1198858
  • Xao SM, Drachev VP, Kildishev AV, et al. Loss-free and active optical negative-index metamaterials. Nature. 2010;466:735–738. doi: 10.1038/nature09278
  • Kastel Ju, Fleischhauer M, Yelin SF, et al. Tunable negative refraction without absorption via electromagnetically induced chirality. Phys Rev Lett. 2007;99(7):073602-1–073602-4. doi: 10.1103/PhysRevLett.99.073602
  • Gaikovich KP. Subsurface near-field scanning tomography. Phys Rev Lett. 2007;98:183902-1–183902-4.
  • Gaikovich KP, Gaikovich PK, Maksimovitch Y, et al. Pseudopulse near-field subsurface tomography. Phys Rev Lett. 2012;108:163902-1–163902-5. doi: 10.1103/PhysRevLett.108.163902
  • Gaikovich KP, Gaikovich PK, Maksimovitch Y, et al. Subsurface near-field microwave holography. IEEE J Selected Topics Appl Earth Observ Remote Sens. 2016;9(1):74–82. doi: 10.1109/JSTARS.2015.2443035
  • Tikhonov AN. Determination of the electrical properties of deep layers of the Earth’s crust. Dokl Acad Nauk SSSR. 1950;73:295–297.
  • Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics. 1953;18:605–635. doi: 10.1190/1.1437915
  • Wait JR. On the relation between telluric currents and the earth's magnetic field. Geophysics. 1954;19:281–289. doi: 10.1190/1.1437994
  • Yungul SH. Magnetotelluric sounding three-layer interpretation curves. Geophysics. 1961;26:465–473. doi: 10.1190/1.1438897
  • Marquardt DW. An algorithm for least-square estimation of non linear parameters. J SIMA. 1963;11:431–441.
  • Rodi W, Mackie RL. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics. 2001;11:174–187. doi: 10.1190/1.1444893
  • Zhdanov MS, Tolstaya E. Minimum support nonlinear parameterization in the solution of 3-D magnetotelluric inverse problem. Inverse Probl. 2004;20:937–952. doi: 10.1088/0266-5611/20/3/017
  • Zhdanov MS, Keller G. The geoelectrical methods in geophysical exploration. Amsterdam: Elsevier; 1994.
  • Carney PS, Markel VA, Schotland JC. Near-field tomography without phase retrieval. Phys. Rev. Lett. 2001;86:5874–5877. doi: 10.1103/PhysRevLett.86.5874
  • Carney PS, Frazin RA, Bozhevolnyi SI, et al. Computational lens for the near field. Phys. Rev. Lett. 2004;92:163903-1–163903-4. doi: 10.1103/PhysRevLett.92.163903
  • Beilina L, Thanhb NT, Klibanov MV, et al. Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements. J Comput Appl Math. 2015;289:371–391. doi: 10.1016/j.cam.2014.11.055
  • Beilina L, Thành NT, Klibanov MV, et al. Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity. Inverse Probl. 2014;30:105007-1–105007-24.
  • Gaikovich KP, Gaikovich PK, Maksimovitch Y, et al. Dual regularization in non-linear inverse scattering problems. Inverse Probl Sci Eng. 2016;24(7):1215–1239. doi: 10.1080/17415977.2016.1160389
  • Gaikovich KP, Maksimovitch Y, Sumin MI. Inverse scattering problems of near-field subsurface pulse diagnostics. Inverse Probl Sci Eng. 2018;26(11):1590–1611. doi: 10.1080/17415977.2017.1417405
  • Gaikovich KP, Gaikovich PK, Khilko AI. Multifrequency near-field acoustic tomography and holography of 3D subbottom inhomogeneities. Inverse Probl Sci Eng. 2017;25(12):1697–1718. doi: 10.1080/17415977.2017.1281269
  • Shestopalov YU, Smirnov YU. Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide. Inverse Probl. 2010;26(10):105002-1–105002-14. doi: 10.1088/0266-5611/26/10/105002
  • Shestopalov YU, Smirnov YU. Determination of permittvtu of an inhomogeneous dielectric body in a waveguide. Inverse Probl. 2011;27:09510.
  • Shestopalov Y, Smirnov Y, Derevyanchuk E. Inverse problem method for complex permittivity reconstruction of layered media in a rectangular waveguide. Phys Status Solidi. 2014;C11(5-6):969–974.
  • Ho JS, Qiu B, Tanabe Yeh YJ, et al. Planar immersion lens with metasurfaces. Phys Rev B. 2015;91:125145-1–125145-8.
  • Zhang L, Mei S, Huang K, et al. Advances in full control of electromagnetic waves with metasurfaces. Adv Optic Mater. 2016;4:818–833. doi: 10.1002/adom.201500690
  • Veysi M, Guclu C, Boyraz O, et al. Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation. J Opt Soc Am B. 2015;32(2):318–323. doi: 10.1364/JOSAB.32.000318
  • Li H-P, Wang G-M, Gao X-J, et al. An X/Ku-band focusing anisotropic metasurface for low cross-polarization lens antenna application. Prog Electromagn Res. 2017;159:79–91. doi: 10.2528/PIER17032807

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.