1,184
Views
18
CrossRef citations to date
0
Altmetric
Articles

Inverse source problems for a space–time fractional differential equation

, &
Pages 47-68 | Received 04 Sep 2017, Accepted 13 Mar 2019, Published online: 25 Mar 2019

References

  • Slodička M. Determination of a solely time-dependent source in a semilinear parabolic problem by means of boundary measurements. J Comput Appl Math. 2015;289:433–440. doi: 10.1016/j.cam.2014.10.004
  • Mohebbi A, Abbasi M. A fourth-order compact difference scheme for the parabolic inverse problem with an overspecification at a point. Inverse Probl Sci Eng. 2015;23:457–478. doi: 10.1080/17415977.2014.922075
  • Aziz S, Malik SA. Identification of an unknown source term for a time fractional fourth order parabolic equation. Electron J Differ Equ. 2016;293:1–20.
  • Sokolov IM, Klafter J. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Chaos. 2005;15:026103. doi: 10.1063/1.1860472
  • Fa KS. Fractal and generalized Fokker Planck equations: description of the characterization of anomalous diffusion in magnetic resonance imaging. J Stat Mech: Theor Exp. 2017;3:033207.
  • Fedotov S, Korabel N. Subdiffusion in an external potential: anomalous effects hiding behind normal behavior. Phys Rev E. 2015;91:042112-1–042112-7.
  • Kang PK, Dentz M, Le borgne T, et al. Anomalous transport in disordered fracture networks: spatial Markov model for dispersion with variable injection models. Adv Water Resour. 2017;106:80–94. doi: 10.1016/j.advwatres.2017.03.024
  • Meerschaert MM, Sikorskii A. Stochastic models for fractional calculus. Berlin: De Gruyter; 2010.
  • Chen ZQ, Kim P, Song R. Heat kernel estimates for the Dirichlet fractional Laplacian. J Eur Math Soc. 2010;12:1307–1329. doi: 10.4171/JEMS/231
  • Salari L, Rondoni L, Giberti C, et al. A simple non-chaotic map generating subdiffusive, diffusive and superdiffusive dynamics. Chaos. 2015;25:073113. doi: 10.1063/1.4926621
  • Weiss GH. Aspects and applications of the random walk. Amsterdam: North-Holland; 1994.
  • Hughes DB. Random walks and random environments. Vol. I, Random walks. Oxford: Clarendon Press; 1995.
  • Mura A, Pagnini G. Characterization and simulations of a class of stochastic processes to model anomalous diffusion. J Phys A: Math Theor. 2008;41:285003. doi: 10.1088/1751-8113/41/28/285003
  • Metzler R, Jeon JH, Cherstvy AG, et al. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys. 2014;16:24128–24164. doi: 10.1039/C4CP03465A
  • Klages R, Radons G, Sokolov IM. Anomalous transport. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2008.
  • Sierociuk D, Skovranek T, Macias M, et al. Diffusion process modeling by using fractional-order models. Appl Math Comput. 2015;257:2–11.
  • Povstenko Y. Linear fractional diffusion-wave equation for scientists and engineers. Switzerland: Springer International Publishing; 2015.
  • Ionescu C, Lopes A, Copot D, et al. The role of fractional calculus in modelling biological phenomena: a review. Commun Nonlinear Sci Numer Simul. 2017;51:141–159. doi: 10.1016/j.cnsns.2017.04.001
  • Höfling F, Franosch T. Anomalous transport in the crowded world of biological cells. Rep Prog Phys. 2013;76:046602 (50pp). doi: 10.1088/0034-4885/76/4/046602
  • Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000.
  • Tarasov VE. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Beijing: Springer-Verlag; 2010.
  • Machado JAT, Lopes AM. Relative fractional dynamics of stock markets. Nonlinear Dyn. 2016;86:1613–1619. doi: 10.1007/s11071-016-2980-1
  • Bagley RL, Torvik PJ. A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol. 1983;27:201–210. doi: 10.1122/1.549724
  • Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press; 2010.
  • Caputo M, Carcione JM, Botelho MAB. Modeling extreme-event precursors with the fractional diffusion equation. Fract Calc Appl Anal. 2015;18:208–222. doi: 10.1515/fca-2015-0014
  • Kirane M, Malik SA. Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time. Appl Math Comput. 2011;218:163–170.
  • Kirane M, Malik SA, Al-Gwaiz MA. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math Methods Appl Sci. 2013;36:1056–1069. doi: 10.1002/mma.2661
  • Ali M, Malik SA. An inverse problem for a family of time fractional diffusion equations. Inverse Probl Sci Eng. 2017;25:1299–1322. doi: 10.1080/17415977.2016.1255738
  • Furati KM, Iyiola OS, Kirane M. An inverse problem for a generalised fractional diffusion. Appl Math Comput. 2014;249:24–31.
  • Wei T, Sun L, Li Y. Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation. Appl Math Lett. 2016;61:108–113. doi: 10.1016/j.aml.2016.05.004
  • Malik SA, Aziz S. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Comput Math Appl. 2017;73:2548–2560. doi: 10.1016/j.camwa.2017.03.019
  • Lopushanska H, Rapita V. Inverse coefficient problem for the semi-linear fractional telegraph equation. Electron J Differ Equ. 2015;153:1–13.
  • Šišková K, Slodička M. Recognition of a time-dependent source in a time-fractional wave equation. Appl Numer Math. 2017;121:1–17. doi: 10.1016/j.apnum.2017.06.005
  • Aziz S, Malik SA. Identification of an unknown source term for a time fractional fourth-order parabolic equation. Electron J Differ Equ. 2016;293:1–28.
  • Tatar S, Ulusoy S. An inverse source problem for a one dimensional space–time fractional diffusion equation. Appl Anal. 2015;94:2233–2244. doi: 10.1080/00036811.2014.979808
  • Feng P, Karimov ET. Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations. J Inverse Ill-Posed Probl. 2015;23:339–353. doi: 10.1515/jiip-2014-0022
  • Liu CS, Chen W, Fu Z. A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain. Eng Anal Bound Elem. 2016;68:11–16. doi: 10.1016/j.enganabound.2016.02.011
  • Al-Jamal MF. A backward problem for the time-fractional diffusion equation. Math Methods Appl Sci. 2017;40:2466–2474. doi: 10.1002/mma.4151
  • Tuan NH, Long LD, Nguyen VT, et al. On a final value problem for the time-fractional diffusion equation with inhomogeneous source. Inverse Probl Sci Eng. 2017;25:1367–1395. doi: 10.1080/17415977.2016.1259316
  • Lukashchuk SY. Estimation of parameters in fractional subdiffusion equations by the time integral characteristics method. Comput Math Appl. 2011;62:834–844. doi: 10.1016/j.camwa.2011.03.058
  • Janno J. Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron J Differ Equ. 2016;199:1–28.
  • Chen S, Jiang XY. Parameter estimation for a new anomalous thermal diffusion model in layered media. Comput Math Appl. 2017;73:1172–1181. doi: 10.1016/j.camwa.2016.10.008
  • Li Z, Imanuvilov OY, Yamamoto M. Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 2015;32:015004.
  • Li Z, Yamamoto M. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl Anal. 2015;94:570–579. doi: 10.1080/00036811.2014.926335
  • Jiang D, Li Z, Liu Y, et al. Weak unique continuation property and a related inverse source problem for time-fractional diffusion–advection equations. Inverse Probl. 2017;33:055013.
  • Liu Y, Rundell W, Yamamoto M. Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract Calc Appl Anal. 2016;19:888–906.
  • Tatar S, Tinaztepe R, Ulusoy S. Simultaneous inversion for the exponents of the fractional time and space derivatives in the space–time fractional diffusion equation. Appl Anal. 2016;95:1–23. doi: 10.1080/00036811.2014.984291
  • Jia J, Peng J, Yang J. Harnack's inequality for a space–time fractional diffusion equation and application to an inverse source problem. J Differ Equ. 2017;262:4415–4450. doi: 10.1016/j.jde.2017.01.002
  • Ali M, Aziz S, Malik SA. Inverse problem for a space–time fractional diffusion equation: application of fractional Sturm–Liouville operator. Math Methods Appl Sci. 2018;41:2733–2744. doi: 10.1002/mma.4776
  • Ali M, Aziz S, Malik SA. Inverse source problem for a space–time fractional diffusion equation. Fract Calc Appl Anal. 2018;21:844–863. doi: 10.1515/fca-2018-0045
  • Gara R, Gorenflo R, Polito F, et al. Hilfer–Prabhakar derivatives and some applications. Appl Math Comput. 2014;242:576–589.
  • Gorenflo R, Kilbas AA, Mainardi F Mittag–Leffler functions, related topics and applications. Berlin: Springer-Verlag; 2014.
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Samko SG, Kilbas AA, Marichev DI. Fractional integrals and derivatives: theory and applications. Amsterdam: Gordon and Breach Science Publishers; 1993.
  • Aleroev TS, Kirane M, Tang YF. The boundary-value problem for a differential operator of fractional order. J Math Sci. 2013;194:499–512. doi: 10.1007/s10958-013-1543-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.