679
Views
9
CrossRef citations to date
0
Altmetric
Articles

An improved generalized flexibility matrix approach for structural damage detection

&
Pages 877-893 | Received 10 Dec 2018, Accepted 14 Oct 2019, Published online: 30 Oct 2019

References

  • Shih HW, Thambiratnam DP, Chan THT. Vibration based structural damage detection in flexural members using multi-criteria approach. J Sound Vib. 2009;323:645–661. doi: 10.1016/j.jsv.2009.01.019
  • Gomes GF, Mendez YAD, da Silva Lopes Alexandrino P, et al. The use of intelligent computational tools for damage detection and identification with an emphasis on composites-a review. Compos Struct. 2018; 196:44–54. doi: 10.1016/j.compstruct.2018.05.002
  • Li J, Li ZG, Zhong HX, et al. Structural damage detection using generalized flexibility matrix and changes in natural frenquencies. AIAA J. 2012;50:1072–1078. doi: 10.2514/1.J051107
  • Yang JP, Li PZ, Yang YF, et al. An improved EMD method for modal indentification and a combined static-dynamic method for damage detection. J Sound Vib. 2018;420:242–260. doi: 10.1016/j.jsv.2018.01.036
  • Feng DM, Feng MQ. Computer version for SHM of civil infrastructure: from dynamic response measurement to damage detection – a review. Eng Struct. 2018;156:105–117. doi: 10.1016/j.engstruct.2017.11.018
  • Zhang WS, Du ZL, Sun G, et al. A level set approach for damage identification of continuum structures based on dynamic responses. J Sound Vib. 2017;386:100–115. doi: 10.1016/j.jsv.2016.06.014
  • Wang XJ, Yang HF, Qiu ZP. Interval analysis method for damage identification of structures. AIAA J. 2010;48:1108–1116. doi: 10.2514/1.45325
  • Vahedi M, Khoshnoudian F. Sensitivity-based damage identification method for structures exposed to ground excitation. Inverse Probl Sci Eng. 2018;26:1404–1431. doi: 10.1080/17415977.2017.1406487
  • Yu L, Zhu JH, Yu LL. Structural damage detection in a truss bridge model using fuzzy clustering and measured FRF date reduced by principle component projection. Adv Struct Eng. 2013;16:207–217. doi: 10.1260/1369-4332.16.1.207
  • Guo J, Wang L, Takewaki I. Frequency response-based damage identification in frames by minimum constitutive relation error and sparse regularization. J Sound Vib. 2019;443:270–292. doi: 10.1016/j.jsv.2018.11.020
  • Link RJ, Zimmerman DC. Structural damage diagnosis using frequency response functions and orthogonal matching pursuit: theoretical development. Struct Control Health Monit. 2015;22:889–902. doi: 10.1002/stc.1720
  • Lin RM, Ng TY. Applications of high-order frequency response functions to the detection and damage assessment of general structural systems with breathing creaks. Int J Mech Sci. 2018;148:652–666. doi: 10.1016/j.ijmecsci.2018.08.027
  • Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. J Sound Vib. 1991;145:321–332. doi: 10.1016/0022-460X(91)90595-B
  • Cao MS, Radzienski M, Xu W, et al. Identification of multiple damage in beams based on robust curvature mode shapes. Mech Syst Signal Process. 2014;46:468–480. doi: 10.1016/j.ymssp.2014.01.004
  • Yan WJ, Ren WX. Closed-form modal flexibility sensitivity and its application to structural damage detection without modal truncation error. J Vib Control. 2014;20:1816–1830. doi: 10.1177/1077546313476724
  • Seyedpoor SM, Montazer M. A damage identification method for truss structures using a flexibility-based damage probability index and differential evolution algorithm. Inverse Probl Sci Eng. 2016;24:1303–1322. doi: 10.1080/17415977.2015.1101761
  • Lu ZR, Wang L. An enhanced response sensitivity approach for structural damage identification: convergence and performance. Int J Numer Methods Eng. 2017; 111:1231–1251. doi: 10.1002/nme.5502
  • Hadjian Shahri AH, Ghorbani-Tanha AK. Damage detection via closed-form sensitivity matrix of modal kinetic energy change ratio. J Sound Vib. 2017; 401:268–281. doi: 10.1016/j.jsv.2017.04.039
  • Hosseinzadeh AZ, Amiri GG, Razzaghi SAS. Model-based identification of damage from sparse sensor measurements using Neumann series expansion. Inverse Probl Sci Eng. 2017;25:239–259. doi: 10.1080/17415977.2016.1160393
  • Cui HY, Xu X, Peng WQ, et al. A damage detection method based on strain modes for structures under ambient excitation. Measurement. 2018;125:438–446. doi: 10.1016/j.measurement.2018.05.004
  • Bernagozzi G, Mukhopadhyay S, Betti R, et al. Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios. Eng Struct. 2018;167:549–566. doi: 10.1016/j.engstruct.2018.04.036
  • Dahak M, Touat N, Kharoubi M. Damage detection in beam through change in measured frequency and undamaged curvature mode shape. Inverse Probl Sci Eng. 2019;27:89–114. doi: 10.1080/17415977.2018.1442834
  • Ghadimi S, Kourehli SS. Multi cracks detection in Euler-Bernoulli beam subjected to a moving mass based on acceleration responses. Inverse Probl Sci Eng. 2018;26:1728–1748. doi: 10.1080/17415977.2018.1430145
  • Hosseinzadeh AZ, Razzaghi SAS, Amiri GG. An iterared IRS technique for cross-sectional damage modelling and identification in beams using limited sensors measurement. Inverse Probl Sci Eng. 2019;27:1145–1169. doi: 10.1080/17415977.2018.1503259
  • Dinh-Cong D, Vo-Duy T, Ho-Huu V, et al. Damage assessment in plate-like structures using a two-stage method based on modal strain energy change and Jaya algorithm. Inverse Probl Sci Eng. 2019;27:166–189. doi: 10.1080/17415977.2018.1454445
  • Fu YZ, Liu JK, Wei ZT, et al. A two-step approach for damage identification in plates. J Vib Control. 2016;22:3018–3031. doi: 10.1177/1077546314557689
  • Yang Z-B, Chen X-F, Xie Y, et al. Hybrid two-step method of damage detection for plate-like structures. Struct Control Health Monit. 2016;23:267–285. doi: 10.1002/stc.1769
  • Li J, Wu BS, Zeng QC, et al. A generalized flexibility matrix based approach for structural damage detection. J Sound Vib. 2010;329:4583–4587. doi: 10.1016/j.jsv.2010.05.024
  • Pandey AK, Biswas M. Damage detection in structures using changes in flexibility. J Sound Vib. 1994;169:3–17. doi: 10.1006/jsvi.1994.1002
  • Yang QW, Liu JK. Damage identification by the eigen parameter decomposition of structural flexibility change. Int J Numer Methods Eng. 2009; 78:444–459. doi: 10.1002/nme.2494
  • Ashory MR, Masoumi M, Jamshidi E, et al. Using continuous wavelet transform of generalized flexibility matrix in damage identification. J Vibroeng. 2013;15:512–519.
  • Masoumi M, Jamshidi E, Bamdad M. Application of generalized flexibility matrix in damage identification using imperialist competitive algorithm. KSCE J Civil Eng. 2015;19:994–1001. doi: 10.1007/s12205-015-0224-4
  • Katebi L, Tehranizadeh M, Mohammadgholibeyki N. A generalized flexibility matrix-based model updating method for damage detection of plane truss and frame structures. J Civil Struct Health Monit. 2018;8:301–314. doi: 10.1007/s13349-018-0276-5
  • Golub GH, Van Loan CF. Matrix computations. 4th ed. Baltimore: The Johns Hopkins University Press; 2013.
  • Horn RA, Johnson CR. Topics in matrix analysis. Cambridge: Cambridge University Press; 1991.
  • Calamai PH, More JJ. Projected gradient methods for linearly constrained problems. Math Program. 1987; 39:93–116. doi: 10.1007/BF02592073
  • Lawson CL, Hanson RJ. Solving least square problems. Philadelphia (PA): SIAM; 1995.
  • Bjorck A. Numerical methods in matrix computation. Heidelberg: Springer; 2015.
  • Murty K. Linear complementarity, linear and nonlinear programmming. Berlin: Helderman; 1988.
  • Cottle RW, Pang JS, Stone RE. The linear complementarity problem. Boston: Academic Press; 1992.
  • Chen XJ, Xiang SH. Perturbation bounds of P-matrix linear complementarity problems. SIAM J Optim. 2008;18:1250–1265. doi: 10.1137/060653019
  • Shi ZY, Law SS, Zhang LM, Structural damage detection from modal strain energy change. ASCE J Eng Mech. 2000;126:1216–1223. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1216)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.