569
Views
3
CrossRef citations to date
0
Altmetric
Articles

Identification of inelastic parameters of the AISI 304 stainless steel: a multi-test optimization strategy

ORCID Icon & ORCID Icon
Pages 1551-1569 | Received 19 Feb 2019, Accepted 16 Feb 2020, Published online: 09 Mar 2020

References

  • Samuel KG, Rodriguez P. On power-law type relationships and the Ludwigson explanation for the stress–strain behaviour of AISI 316 stainless steel. J Mater Sci. 2005;40:5727–5731. doi:10.1007/s10853-005-1078-9.
  • Samuel KG. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters. J Phys D Appl Phys. 2006;39:203–212. doi:10.1088/0022-3727/39/1/030.
  • Hollomon JH. Tensile deformation. Trans AIME. 1945;162:268–290.
  • Swift BH. Plastic instability under plane stress. J Mech Phys Solids. 1952;1:1–18. doi:10.1016/0022-5096(52)90002-1.
  • Ludwigson DC. Modified stress–strain relation for FCC metals and alloys. Metal Trans. 1971;2:2825–2828. doi:10.1007/BF02813258.
  • Kashyap BP, Tangri K. On the Hall–Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater. 1995;43:3971–39811. doi:10.1016/0956-7151(95)00110-H.
  • Hertelé S, De Waele W, Denys R. A generic stress–strain model for metallic materials with two-stage strain hardening behaviour. Int J Non-linear Mech. 2011;46:519–531. doi:10.1016/j.ijnonlinmec.2010.12.004.
  • Ramberg W, Osgood WR. Description of stress–strain curves by three parameters. Washington: NACA; 1943. (Technical note; no. 902).
  • El-Magd E. Modeling and simulation of mechanical behavior, In: Totten GE, Xie L, Funatani K, editors. Modeling and simulation of material selection and mechanical design. New York: Dekker; 2004. Chapter 4.
  • Voce E. The relationship between stress and strain for homogeneous deformation. J Inst Metals. 1948;74:537–562.
  • Harth T, Schwan S, Lehn J, et al. Identification of material parameters for constitutive models: statistical analysis and design of experiments. Int J Plasticity. 2004;20:1403–1440. doi:10.1016/j.ijplas.2003.11.001.
  • Haghdadi N, Martin D, Hodgson P. Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Mater Design. 2016;106:420–427. doi:10.1016/j.matdes.2016.05.118.
  • Mahnken R. Theoretical numerical and identification aspects of a new model class for ductile damage. Int J Plasticity. 2002;18:801–831. doi:10.1016/S0749-6419(00)00105-4.
  • Wang M, Wu J. Identification of plastic properties of metal materials using spherical indentation experiment and Bayesian model updating approach. Int J Mech Sci. 2019;151:733–745. doi:10.1016/j.ijmecsci.2018.12.027.
  • Pacheco CC, Dulikravich GS, Vesenjak M, et al. Inverse parameter identification in solid mechanics using Bayesian statistics response surfaces and minimization. Tech Mech. 2016;36:120–131. doi:10.24352/ub.ovgu-2017-014.
  • Vaz Jr. M, Muñoz-Rojas PA, Cardoso EL, et al. Considerations on parameter identification and material response for Gurson-type and Lemaitre-type constitutive models. Int J Mech Sci. 2016;106:254–265. doi:10.1016/j.ijmecsci.2015.12.014.
  • Carniel TA, Muñoz-Rojas PA, Vaz Jr M. A viscoelastic viscoplastic constitutive model including mechanical degradation: uniaxial transient finite element formulation at finite strains and application to space truss structures. Appl Math Modelling. 2015;39:1725–1739. doi:10.1016/j.apm.2014.09.036.
  • Jin YF, Yin ZY, Shen SL, et al. A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Probl Sci Eng. 2017;25:1343–1366. doi:10.1080/17415977.2016.1259315.
  • Yoshida F, Urabe M, Hino R, et al. Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Int J Plasticity. 2003;19:2149–2170. doi:10.1016/S0749-6419(03)00063-9.
  • Ponthot JP, Kleinermann JP. A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput Meth Appl Mech Eng. 2006;195:5472–5508. doi:10.1016/j.cma.2005.11.012.
  • Vaz Jr. M, Hulse ER, Tomiyama M. A note on parameter identification of the AISI 304 stainless steel using micromechanical-based phenomenological approaches. Mater Res. 2019;22:e20190222. doi:10.1590/1980-5373-MR-2019-0222.
  • Vaz Jr. M, Hulse ER, Tomiyama M. Identification of inelastic parameters of the AISI 304 stainless steel. In Öchsner A, Altenbach H, editors. Engineering design applications II. structures materials and processes. Chem: Springer Nature; 2020.
  • Pierron F, Grédiac M. The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. New York: Springer; 2012.
  • Martins JMP, Andrade-Campos A, Thuillier S. Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements. Int J Mech Sci. 2018;145:330–345. doi: 10.1016/j.ijmecsci.2018.07.013
  • Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–313. doi:10.1093/comjnl/8.1.27. doi: 10.1093/comjnl/7.4.308
  • Lagarias JC, Reeds JA, Wright MH, et al. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim. 1998;9:112–147. doi:10.1137/S1052623496303470.
  • Vaz Jr. M, Cardoso EL, Muñoz-Rojas PA, et al. Identification of constitutive parameters – optimization strategies and applications. Mat-wiss U Werkstofftech. 2015;46:447–491. doi:10.1002/mawe.201500423.
  • Vaz Jr M, Cardoso EL, Stahlschmidt J. Particle swarm optimization and identification of inelastic material parameters. Eng Comput. 2013;30:936–960. doi:10.1108/EC-10-2011-0118.
  • Vaz Jr. M, Luersen MA, Muñoz-Rojas PA, et al. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid particle swarm approach. C R Mecanique. 2016;344:319–334. doi:10.1016/j.crme.2015.07.015.
  • ASTM E8 / E8M-09. Standard test methods for tension testing of metallic materials. West Conshohocken: ASTM International; 2009.
  • ABNT NBR ISO 6892. Metallic materials – tensile testing at ambient temperature. Rio de Janeiro: ABNT; 2002.
  • Subramonian S, Kardes N. Materials for sheet forming. In: Altan T, Tekkaya E, editors. Sheet metal forming: fundamentals. Materials Park: ASM; 2012. p. 73–88.
  • De AK, Speer JG, Matlock DK, et al. Deformation-induced phase transformation and strain hardening in yype 304 austenitic stainless steel. Metall Mater Trans A. 2006;36A:1875–1886. doi:10.1007/s11661-006-0130-y.
  • Mecking H, Kocks UF. Kinetics of flow and strain hardening. Acta Metall. 1981;29:1865–1875. doi:10.1016/0001-6160(81)90112-7.
  • Panich S, Barlat F, Uthaisangsuk V, et al. Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater Design. 2013;51:756–766. doi:10.1016/j.matdes.2013.04.080.
  • Gruber M, Lebaal N, Roth S, et al. Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach. Int J Mater Form. 2016;9:21–33. doi:10.1007/s12289-014-1196-5.
  • Lubliner J. Plasticity theory. Mineola: Dover Publications; 2008.
  • de Souza Neto EA, Peric D, Owen DRJ. Computational methods for plasticity: theory and applications. Chichester: Wiley; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.