985
Views
5
CrossRef citations to date
0
Altmetric
Articles

Solving generalized inverse eigenvalue problems via L-BFGS-B method

& ORCID Icon
Pages 1719-1746 | Received 30 Jun 2019, Accepted 22 Apr 2020, Published online: 17 Jun 2020

References

  • Saad Y. Numerical[Q3] methods for large eigenvalue problems. Vol. 66 of 2nd revised ed. Philadelphia: SIAM; 2011.
  • Güttel S, Tisseur F. The nonlinear eigenvalue problem. Acta Numer. 2017;26:1–94.
  • Chu MT, Golub GH. Inverse eigenvalue problems. Oxford: Oxford University Press; 2005. (Algorithms and Applications).
  • Hajarian M, Abbas H. Least squares solutions of quadratic inverse eigenvalue problem with partially bisymmetric matrices under prescribed submatrix constraints. Comput Math Appl. 2018;76(6):1458–1475.
  • Hajarian M. An efficient algorithm based on Lanczos type of BCR to solve constrained quadratic inverse eigenvalue problems. J Comput Appl Math. 2019;346:418–431.
  • Hajarian M. BCR algorithm for solving quadratic inverse eigenvalue problems with partially bisymmetric matrices. Asian J Control. 2020;22(2):687–695.
  • Cia J, Chen J. Least-squares solutions of generalized inverse eigenvalue problem over Hermitian-Hamiltonian matrices with a submatrix constraint. Comput Appl Math. 2018;37(1):593–603.
  • Liu ZY, Tan YX, Tian ZL. Generalized inverse eigenvalue problem for centrohermitian matrices. J Shanghai Univ Eng Ed. 2004;8(4):448–453.
  • Gu W, Li Z. Generalized inverse eigenvalue problem for generalized snow-like matrices. Fourth International Conference on Computational and Information Sciences; 2012; Chongqing, China. IEEE. p. 662–664.
  • Yuan YX, Dai H. A generalized inverse eigenvalue problem in structural dynamic model updating. J Comput Appl Math. 2009;226(1):42–49.
  • Ghanbari K, Parvizpour F. Generalized inverse eigenvalue problem with mixed eigendata. Linear Algebra Appl. 2012;437(8):2056–2063.
  • Gladwell GM. Inverse problems in vibration. Appl Mech Rev. 1986;39(7):1013–1018.
  • Gigola S, Lebtahi L, Thome N. Inverse eigenvalue problem for normal J-hamiltonian matrices. Appl Math Lett. 2015;48:36–40.
  • Chu MT, Golub GH. Structured inverse eigenvalue problems. Acta Numer. 2002;11:1–71.
  • Joseph KT. Inverse eigenvalue problem in structural design. Numer Linear Algebra Appl. 1992;30(12):2890–2896.
  • Jiang J, Dai H, Yuang Y. A symmetric generalized inverse eigenvalue problem in structural dynamics model updating. Linear Algebra Appl. 2013;439(5):1350–1363.
  • Zhang ZZ, Han XL. Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices. J Cent South Univ Technol. 2005;12(1):294–297.
  • Byrnes CI, Wang X. The additive inverse eigenvalue problem for Lie perturbations. SIAM J Matrix Anal Appl. 1993;14(1):113–117.
  • Majkut L. Eigenvalue based inverse model of beam for structural modification and diagnostics: examples of using. Lat Am J Solids Struct. 2010;7(4):437–456.
  • Cox SJ, Embree M, Hokanson JM. One can hear the composition of a string: experiments with an inverse eigenvalue problem. SIAM Rev. 2012;54(1):157–178.
  • Li K, Liu J, Han J, et al. Identification of oil-film coefficients for a rotor-journal bearing system based on equivalent load reconstruction. Tribol Int. 2016;104:285–293.
  • Liu J, Meng X, Zhang D, et al. An efficient method to reduce ill-posedness for structural dynamic load identification. Mech Syst Signal Process. 2017;95:273–285.
  • Liu J, Sun X, Han X, et al. Dynamic load identification for stochastic structures based on gegenbauer polynomial approximation and regularization method. Mech Syst Signal Process. 2015;56:3–54.
  • Bonnet M, Constantinescu A. Inverse problems in elasticity. Inverse Probl. 2005;21(2):R1.
  • Barcilon V. On the multiplicity of solutions of the inverse problem for a vibrating beam. SIAM J Appl Math. 1979;37(3):605–613.
  • Hasanov A, Baysal O. Identification of an unknown spatial load distribution in a vibrating cantilevered beam from final overdetermination. J Inverse Ill-posed Probl. 2015;23(1):85–102.
  • Mulaik SA. Fundamentals of common factor analysis. In: The Wiley Handbook of psychometric testing: a multidisciplinary reference on survey, scale and test development. New Jersey; 2018. p. 209–251.
  • Yang Y, Wei G. Inverse scattering problems for Sturm–Liouville operators with spectral parameter dependent on boundary conditions. Math Notes. 2018;103(1–2):59–66.
  • Jensen JS. Phononic band gaps and vibrations in one-and two-dimensional mass–spring structures. J Sound Vib. 2003;266(5):1053–1078.
  • Li LL. Sufficient conditions for the solvability of algebraic inverse eigenvalue problems. Linear Algebra Appl. 1995;221:117–129.
  • Xu SF. On the sufficient conditions for the solvability of algebraic inverse eigenvalue problems. J Comput Math. 1992;10:17–80.
  • Biegler-König FW. Suffcient conditions for the solubility of inverse eigenvalue problems. Linear Algebra Appl. 1981;40:89–100.
  • Alexander J. The additive inverse eigenvalue problem and topological degree. Proc Amer Math Soc. 1978;70:5–7.
  • Friedland S, Nocedal J, Overto ML. The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J Numer Anal. 1987;24(3):634–667.
  • Xu S. On the necessary conditions for the solvability of algebraic inverse eigenvalue problems. J Comput Math. 1992;10:93–97.
  • Ji X. On matrix inverse eigenvalue problems. Inverse Probl. 1998;14(2):275–285.
  • Dai H, Bai ZZ, Wei Y. On the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problem. SIAM J Matrix Anal Appl. 2015;36(2):707–726.
  • Rojo O, Soto R. New conditions for the additive inverse eigenvalue problem for matrices. Comput Math Appl. 1992;23:41–46.
  • Li L. Some sufficient conditions for the solvability of inverse eigenvalue problems. Linear Algebra Appl. 1991;148:225–236.
  • Xu SF. A smallest singular value method for solving inverse eigenvalue problems. J Comput Math. 1996;1:23–31.
  • Dai H. An algorithm for symmetric generalized inverse eigenvalue problems. Linear Algebra Appl. 1999;296:79–98.
  • Dai H, Lancaster P. Newton's method for a generalized inverse eigenvalue problem. Numer Linear Algebra Appl. 1997;4:1–21.
  • Shu L, Wang B, Hu JZ. Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics. Appl Math Mech. 2004;25(5):580–586.
  • Lancaster P. Algorithms for lambda-matrices. Numer Math. 1964;6(1):388–394.
  • Biegler-König FW. A newton iteration process for inverse eigenvalue problems. Numer Math. 1981;37(3):349–354.
  • Golub GH, VanLoan CF. Matrix computations. Vol. 3. Baltimore: JHU Press; 2012.
  • Yamamoto Y, Lan Z, Kudo S. Convergence analysis of the parallel classical block Jacobi method for the symmetric eigenvalue problem. JSIAM Lett. 2014;6:57–60.
  • Johnson C, Horn R. Matrix analysis. Cambridge: Cambridge university press; 1985.
  • Xu D, Liu Z, Xu Y, et al. A sorted jacobi algorithm and its parallel implementation. Trans Beijing Inst Technol. 2010;12:1470–1474.
  • Ji-guang S. Sensitivity analysis of multiple eigenvalues (i). Int J Comput Math. 1988;1:28–38.
  • Byrd RH, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–1208.
  • Keskar N, Wächter A. A limited-memory quasi-newton algorithm for bound-constrained non-smooth optimization. Optim Methods Softw. 2019;34(1):150–171.
  • Haarala N, Miettinen K, Mäkelä MM. Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math Program. 2007;109(1):181–205.
  • Mokhtari A, Ribeiro A. Global convergence of online limited memory BFGS. J Mach Learn Res. 2015;16(1):3151–3181.
  • Friedland S. Inverse eigenvalue problems. Linear Algebra Appl. 1977;17(1):15–51.
  • Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of the IEEE international conference on neural networks. Vol. 4; 1995. IEEE. p. 1942–1948.
  • Shi Y, Eberhart R. A modified particle swarm optimizer. 1998 IEEE international conference on evolutionary computation proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360); 1998. p. 69–73.
  • AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput. 2008;13(4):913–918.
  • Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag. 2004;52(2):397–407.
  • Abousleiman R, Rawashdeh O. Electric vehicle modelling and energy-efficient routing using particle swarm optimisation. IET Intell Transp Syst. 2016;10(2):65–72.
  • Gudise VG, Venayagamoorthy GK. Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706); 2003; Indianapolis, USA. p. 110–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.