603
Views
4
CrossRef citations to date
0
Altmetric
Articles

Comparative studies on the criteria for regularization parameter selection based on moving force identification

ORCID Icon, , & ORCID Icon
Pages 153-173 | Received 06 Dec 2019, Accepted 07 Jun 2020, Published online: 22 Jun 2020

References

  • Malekjafarian A, Obrien EJ. Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle. Eng Struct. 2014;81:386–397. doi: 10.1016/j.engstruct.2014.10.007
  • Zhu XQ, Law SS. Structural health monitoring based on vehicle-bridge interaction: accomplishments and challenges. Adv Struct Eng. 2015;18:1999–2015. doi: 10.1260/1369-4332.18.12.1999
  • Tian YD, Zhang J, Han YX. Structural scaling factor identification from output-only data by a moving mass technique. Mech Syst Signal Process. 2019;115:45–59. doi: 10.1016/j.ymssp.2018.05.040
  • Aucejo M, De Smet O. A space-frequency multiplicative regularization for force reconstruction problems. Mech Syst Signal Process. 2018;104:1–18. doi: 10.1016/j.ymssp.2017.10.027
  • Sun XS, Liu J, Han X, et al. A new improved regularization method for dynamic load identification. Inverse Prob Sci Eng. 2014;22:1062–1076. doi: 10.1080/17415977.2013.854353
  • Inoue H, Harrigan JJ, Reid SR. Review of inverse analysis for indirect measurement of impact force. Appl Mech Rev. 2001;54:503–524. doi: 10.1115/1.1420194
  • Abbasnia R, Mirzaee A, Shayanfar M. Simultaneous identification of moving loads and structural damage by Adjoint variable. Struct Eng Mech. 2015;56:871–897. doi: 10.12989/sem.2015.56.5.871
  • Xu X, Ou JP. Force identification of dynamic systems using virtual work principle. J Sound Vib. 2015;337:71–94. doi: 10.1016/j.jsv.2014.10.005
  • Jia Y, Yang ZC, Song QZ. Experimental study of random dynamic loads identification based on weighted regularization method. J Sound Vib. 2015;342:113–123. doi: 10.1016/j.jsv.2014.12.010
  • Qiao BJ, Chen XF, Xue XF, et al. The application of cubic B-spline collocation method in impact force identification. Mech Syst Signal Process. 2015;64-65:413–427. doi: 10.1016/j.ymssp.2015.04.009
  • Qiao BJ, Zhang XW, Wang CX, et al. Sparse regularization for force identification using dictionaries. J. Sound Vib. 2016;368:71–86. doi: 10.1016/j.jsv.2016.01.030
  • Li K, Liu J, Han X, et al. A novel approach for distributed dynamic load reconstruction by space-time domain decoupling. J Sound Vib. 2015;348:137–148. doi: 10.1016/j.jsv.2015.03.009
  • Li K, Liu J, Han X, et al. Distributed dynamic load identification based on shape function method and polynomial selection technique. Inverse Prob Sci Eng. 2017;25:1323–1342. doi: 10.1080/17415977.2016.1255740
  • Tran H, Inoue H. Development of wavelet deconvolution technique for impact force reconstruction: application to reconstruction of impact force acting on a load-cell. Int J Impact Eng. 2018;122:137–147. doi: 10.1016/j.ijimpeng.2018.07.020
  • Jiang WS, Wang ZY, Lv J. A fractional-order accumulative regularization filter for force reconstruction. Mech Syst Signal Process. 2018;101:405–423. doi: 10.1016/j.ymssp.2017.09.001
  • Liu J, Sun XS, Han X, et al. Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method. Mech Syst Signal Process. 2015;56-57:35–54. doi: 10.1016/j.ymssp.2014.10.008
  • Liu J, Meng XH, Jiang C, et al. Time-domain Galerkin method for dynamic load identification. Int J Numer Meth Eng. 2016;105:620–640. doi: 10.1002/nme.4991
  • Liu J, Meng XH, Zhang DQ, et al. An efficient method to reduce ill-posedness for structural dynamic load identification. Mech Syst Signal Process. 2017;95:273–285. doi: 10.1016/j.ymssp.2017.03.039
  • He ZC, Zhang ZM, Li E. Multi-source random excitation identification for stochastic structures based on matrix perturbation and modified regularization method. Mech Syst Signal Process. 2019;119:266–292. doi: 10.1016/j.ymssp.2018.09.021
  • He ZC, Lin XY, Li E. A novel method for load bounds identification for uncertain structures in frequency domain. Int J Comput Methods. 2018;15:1850051. doi: 10.1142/S0219876218500512
  • Chang XT, Yan YJ, Wu YF. Study on solving the ill-posed problem of force load reconstruction. J Sound Vib. 2019;440:186–201. doi: 10.1016/j.jsv.2018.10.017
  • Chen Z, Chan THT, Nguyen A. Moving force identification based on modified preconditioned conjugate gradient method. J Sound Vib. 2018;423:100–117. doi: 10.1016/j.jsv.2017.11.034
  • Chen Z, Qin LF, Zhao SB, et al. Toward efficacy of piecewise polynomial truncated singular value decomposition algorithm in moving force identification. Adv Struct Eng. 2019;22:2687–2698. doi: 10.1177/1369433219849817
  • Chen Z, Chan THT, Nguyen A, et al. Identification of vehicle axle loads from bridge responses using preconditioned least square QR-factorization algorithm. Mech Syst Signal Process. 2019;128:479–496. doi: 10.1016/j.ymssp.2019.03.043
  • Chen Z, Chan THT, Yu L. Comparison of regularization methods for moving force identification with ill-posed problems. J Sound Vib. 2020;478:115349. doi: 10.1016/j.jsv.2020.115349
  • Pan CD, Liu HL, Yu L. A sparse self-estimated sensor-network for reconstructing moving vehicle forces. Smart Mater Struct. 2019;28:085009. doi: 10.1088/1361-665X/ab28ed
  • Zhong JW, Liu HL, Yu L. Sparse regularization for traffic load monitoring using bridge response measurements. Measurement ( Mahwah N J). 2019;131:173–182.
  • Liu HL, Yu L, Luo ZW, et al. Compressed sensing for moving force identification using redundant dictionaries. Mech Syst Signal Process. 2020;138:106535. doi: 10.1016/j.ymssp.2019.106535
  • Zhao ZY, Meng ZH. A modified Tikhonov regularization method for a backward heat equation. Inverse Prob Sci Eng. 2011;19:1175–1182. doi: 10.1080/17415977.2011.605885
  • Sanchez J, Benaroya H. Review of force reconstruction techniques. J Sound Vib. 2014;333:2999–3018. doi: 10.1016/j.jsv.2014.02.025
  • Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics. 1979;21:215–223. doi: 10.1080/00401706.1979.10489751
  • Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992;34:561–580. doi: 10.1137/1034115
  • Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci and Stat Comput. 1993;14:1487–1503. doi: 10.1137/0914086
  • Bauer F, Kindermann S. The quasi-optimality criterion for classical inverse problems. Inverse Prob. 2008;4:035002. doi: 10.1088/0266-5611/24/3/035002
  • Bonesky T. Morozov's discrepancy principle and Tikhonov-type functionals. Inverse Prob. 2009;25:015015. doi: 10.1088/0266-5611/25/1/015015
  • He ZC, Zhang ZM, Li E. Random dynamic load identification for stochastic structural-acoustic system using an adaptive regularization parameter and evidence theory. J Sound Vib. 2020;471:115118. doi: 10.1016/j.jsv.2020.115188
  • Liu J, Sun XS, Han X, et al. A novel computational inverse technique for load identification using the shape function method of moving least square fitting. Comput Struct. 2014;114:127–137. doi: 10.1016/j.compstruc.2014.08.002
  • He ZC, Lin XY, Li E. A non-contact acoustic pressure-based method for load identification in acoustic-structural interaction system with non-probabilistic uncertainty. Appl. Acoust. 2019;148:223–237. doi: 10.1016/j.apacoust.2018.12.034
  • Hansen PC. The L-curve and its use in the numerical treatment of inverse problems. In: Johnston P, editor. Computational inverse problems in electrocardiology. Southampton: WIT Press. 2000. p. 119–142.
  • Qiao BJ, Chen XF, Luo XJ, et al. A novel method for force identification based on the discrete cosine transform. J Vib Acoust. 2015;137:051012. doi: 10.1115/1.4030616
  • Varah JM. Pitfalls in the numerical solution of linear ill-posed problems. SIAM J Sci Comput. 1983;4:164–176. doi: 10.1137/0904012
  • Vogel CR. Non-convergence of the L-curve regularization parameter selection method. Inverse Probl. 1996;12:535–547. doi: 10.1088/0266-5611/12/4/013
  • Fouladi MH, Nor MJM, Ariffin AK, et al. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing. Mech Syst Signal Process. 2009;23(8):2519–2537. doi: 10.1016/j.ymssp.2009.05.008
  • Moses F. Weigh-in-motion system using instrumented bridges. Transp Engrg J. 1979;105:233–249.
  • Law SS, Chan THT, Zeng QH. Moving force identification: a time domain method. J Sound Vib. 1997;201:1–22. doi: 10.1006/jsvi.1996.0774
  • Hansen PC. Regularization GSVD and truncated GSVD. BIT Numerical Mathematics. 1989;29:491–504. doi: 10.1007/BF02219234
  • Chen Z, Chan THT. A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems. J Sound Vib. 2017;401:297–310. doi: 10.1016/j.jsv.2017.05.004
  • Morigi S, Reichel L, Sgallari F. A truncated projected SVD method for linear discrete ill-posed problems. Numer Algorithms. 2006;43:197–213. doi: 10.1007/s11075-006-9053-3
  • Pan CD, Yu L, Liu HL, et al. Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization. Mech Syst Signal Process. 2018;98:32–49. doi: 10.1016/j.ymssp.2017.04.032
  • Miao BR, Zhou F, Jiang CY, et al. A comparative study of regularization method in structure load identification. Shock Vib. 2018;2018:9204865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.