1,479
Views
5
CrossRef citations to date
0
Altmetric
Articles

Reconstruction algorithm for 3D Compton scattering imaging with incomplete data

&
Pages 967-989 | Received 21 Feb 2019, Accepted 17 Aug 2020, Published online: 08 Sep 2020

References

  • Hounsfield GN. Computerized transverse axial scanning (tomography). I. Description of system. Br J Radiol. 1973;46:1016–1022. doi: 10.1259/0007-1285-46-552-1016
  • Alvarez RE , Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21:733–744. doi: 10.1088/0031-9155/21/5/002
  • Primak AN , Ramirez Giraldo JC , Liu X , et al. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36:1359–1369. doi: 10.1118/1.3083567
  • Shefer E , Altman A , Behling R , et al. State of the art of CT detectors and sources: a literature review. Curr Radiol Rep. 2013;1:76–91. doi: 10.1007/s40134-012-0006-4
  • Tracey B , Miller E. Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization. Inverse Probl. 2015;31:05004. doi: 10.1088/0266-5611/31/10/105004
  • McCollough CH , Leng S , Lifeng Y , et al. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276:637–653. doi: 10.1148/radiol.2015142631
  • Goo HW , Goo JM. Dual-Energy CT: new Horizon in medical imaging. Korean J Radiol. 2017;18:555–569. doi: 10.3348/kjr.2017.18.4.555
  • Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications. Nucl Instrum Methods Phys Res Sect A. 2018;878:74–87. doi: 10.1016/j.nima.2017.07.044
  • Griesmer JJ , Kline B , Grosholz J , et al. Performance evaluation of a new CZT detector for nuclear medicine: solstice. Proceedings of the 2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2; San Diego, CA, USA. IEEE; 2001. p. 1050–1054.
  • Qiang L , Beilicke M , Lee K , et al. Study of thick CZT detectors for X-ray and gamma-ray astronomy. Astropart Phys. 2011;34:769–777. doi: 10.1016/j.astropartphys.2011.01.013
  • Watanabe S , Ishikawa S , Aono H , et al. High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices. IEEE Trans Nucl Sci. 2009;56:777–782. doi: 10.1109/TNS.2008.2008806
  • Campbell DL , Hull EL , Peterson TE. Evaluation of a compact, general-purpose Germanium Gamma camera. Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference; Seoul. IEEE; 2013. p. 1–6.
  • Kishimoto A , Kataoka J , Koide A , et al. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging. Nucl Instrum Methods Phys Res Sect A. 2017;845:656–659. doi: 10.1016/j.nima.2016.06.056
  • Cherry SR , Sorenson J , Phelps M. Physics in nuclear medicine. Philadelphia : Elsevier Inc.; 2012; Available from: https://doi.org/10.1016/C2009-0-51635-2 .
  • Compton AH. A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 1923;21:483–502. doi: 10.1103/PhysRev.21.483
  • Gibbons JP. Khan's the physics of radiation therapy. Philadelphia : Lippincott Williams & Wilkins (LWW); 2019.
  • Lale PG. The examination of internal tissues, using gamma-ray scatter with a possible extension to megavoltage radiography. Phys Med Biol. 1959;4:159–167. doi: 10.1088/0031-9155/4/2/305
  • Norton SJ. Compton scattering tomography. J Appl Phys. 1994;76:2007–2015. doi: 10.1063/1.357668
  • Cesareo R , Cappio Borlino C , Brunetti A , et al. A simple scanner for Compton tomography. Nucl Instrum Methods Phys Res A. 2002;487:188–192. doi: 10.1016/S0168-9002(02)00964-6
  • Adejumo OO , Balogun FA , Egbedokun GGO. Developing a Compton scattering tomography system for soil studies: theory. J Sustainable Dev Environ Prot. 2011;1:73–81.
  • Anghaie S , Humphries LL , Diaz NJ. Material characterization and flaw detection, sizing, and location by the differential gamma scattering spectroscopy technique. part 1: development of theoretical basis. Nucl Technol. 1990;91:361–375. doi: 10.13182/NT90-A34457
  • Balogun FA , Cruvinel PE. Compton scattering tomography in soil compaction study. Nucl Instrum Methods Phys Res A. 2003;505:502–507. doi: 10.1016/S0168-9002(03)01133-1
  • Brunetti A , Cesareo R , Golosio B , et al. Cork quality estimation by using Compton tomography. Nucl Instrum Methods Phys Res B. 2002;196:161–168. doi: 10.1016/S0168-583X(02)01289-2
  • Clarke RL , Van Dyk G. A new method for measurement of bone mineral content using both transmitted and scattered beams of gamma-rays. Phys Med Biol. 1973;18:532–539. doi: 10.1088/0031-9155/18/4/005
  • Evans BL , Martin JB , Burggraf LW , et al. Nondestructive inspection using Compton scatter tomography. IEEE Trans Nucl Sci. 1998;45:950–956. doi: 10.1109/23.682682
  • Farmer FT , Collins MP. A new approach to the determination of anatomical cross-sections of the body by Compton scattering of gamma-rays. Phys Med Biol. 1971;16:577–586. doi: 10.1088/0031-9155/16/4/001
  • Gorshkov VA , Kroening M , Anosov YV , et al. X-Ray scattering tomography. Nondestr Test Eval. 2005;20:147–157. doi: 10.1080/10589750500191026
  • Harding G , Harding E. Compton scatter imaging: a tool for historical exploitation. Appl Radiat Isot. 2010;68:993–1005. doi: 10.1016/j.apradiso.2010.01.035
  • Meneley DA , Hussein EMA , Banerjee S. On the solution of the inverse problem of radiation scattering imaging. Nucl Sci Eng. 1986;92:341–349. doi: 10.13182/NSE86-A17524
  • Arendtsz NV , Hussein EMA. Energy-spectral Compton scatter imaging – part 1: theory and mathematics. IEEE Trans Nucl Sci. 1995;42:2155–2165. doi: 10.1109/23.489441
  • Guzzardi R , Licitra G. A critical review of Compton imaging. CRC Crit Rev Biomed Imaging. 1988;15:237–268.
  • Rigaud G. Compton scattering tomography: feature reconstruction and rotation-free modality. SIAM J Imaging Sci. 2017;10:2217–2249. doi: 10.1137/17M1120105
  • Redler G , Jones KC , Templeton A , et al. Compton scatter imaging: a promising modality for image guidance in lung stereotactic body radiation therapy. Med Phys. 2018;45:1233–1240. doi: 10.1002/mp.12755
  • Jones KC , Redler G , Templeton A , et al. Characterization of Compton-scatter imaging with an analytical simulation method. Phys Med Biol. 2018;63:025016.
  • Nguyen MK , Truong TT , Morvidone M , et al. Scattered radiation emission imaging: principles and applications. Int J Biomed Imaging. 2011;2011:913893. doi: 10.1155/2011/913893
  • Prado PG , Nguyen MK , Dumas L , et al. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality. J Electron Imaging. 2017;26:011026.
  • Rigaud G , Hahn B. 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Probl. 2018;34:075004. doi: 10.1088/1361-6420/aabf0b
  • Klein I , Nishina Y. Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac. Z Phys. 1929;52:853–869. doi: 10.1007/BF01366453
  • Kuhn HW , Tucker AW. Nonlinear programming. In: Neyman J, editor. Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA: University of California Press; 1951. p. 481–492.
  • Shepp LA , Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–122. doi: 10.1109/TMI.1982.4307558
  • Vardi Y , Shepp LA , Kaufman L. A statistical model for positron emission tomography. J Amer Stat Assoc. 1985;80:8–20. doi: 10.1080/01621459.1985.10477119
  • Hudson HM , Larkin RS. Accelerated EM reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–609. doi: 10.1109/42.363108
  • Stonestrom JP , Alvarez RE , Macovski A. A framework for spectral artifact corrections in X-ray CT. IEEE Trans Biomed Eng. 1981;28:128–141. doi: 10.1109/TBME.1981.324786
  • Rudin LI , Osher S , Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. 1992;60:259–268. doi: 10.1016/0167-2789(92)90242-F
  • Rigaud G. 3D Compton scattering imaging: study of the spectrum and contour reconstruction; 2019. arXiv:1908.03066.
  • Rigaud G , Régnier R , Nguyen MK , et al. Combined modalities of Compton scattering tomography. IEEE Trans Nucl Sci. 2013;60:1570–1577. doi: 10.1109/TNS.2013.2252022