501
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nonlocal viscoelastic Euler-Bernoulli beam model: a Bayesian approach for parameter estimation using the delayed rejection adaptive metropolis algorithm

, ORCID Icon &
Pages 1672-1701 | Received 11 Mar 2020, Accepted 05 Dec 2020, Published online: 28 Dec 2020

References

  • Il'ina MV, Il'in OI, Blinov YF, et al. Piezoelectric response of multi-walled carbon nanotubes. Materials. 2018;11(4):638.
  • Ageev O, Blinov YF, Il'ina MV, et al. Resistive switching of vertically aligned carbon nanotubes for advanced nanoelectronic devices. In: Tiwari A, Mishra YK, Kobayashi H, Turner APF, editors. Intelligent nanomaterials. Basel: John Wiley & Sons; 2017. p. 361–394.
  • Fakher M, Rahmanian S, Hosseini-Hashemi S. On the carbon nanotube mass nanosensor by integral form of nonlocal elasticity. Int J Mech Sci. 2019;150:445–457.
  • Karličić D, Kozić P, Adhikari S, et al. Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. Int J Mech Sci. 2015;96–97:132–142.
  • Gibson RF, Ayorinde EO, Wen YF. Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol. 2007;67(1):1–28.
  • Kinloch IA, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: an outlook. Science. 2018;362(6414):547–553.
  • Arash B, Wang Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci. 2012;51(1):303–313.
  • Eltaher MA, Khater ME, Emam SA. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model. 2016;40(5):4109–4128.
  • Wang Y, LI F. Dynamical properties of nanotubes with nonlocal continuum theory: a review. Sci China Phys Mech Astron. 2012;55(7):1210–1224.
  • Büyüköztürk O, Buehler MJ, Lau D, et al. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. Int J Solids Struct. 2011;48(14-15):2131–2140.
  • Adhikari S, Gilchrist D, Murmu T, et al. Nonlocal normal modes in nanoscale dynamical systems. Mech Syst Signal Process. 2015;60:583–603.
  • Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–4710.
  • Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci. 2007;45:288–307.
  • Wang Q, Varadan VK. Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct. 2006;15:659–666.
  • Wang CM, Zhang YY, He XQ. Vibration of nonlocal Timoshenko beams. Nanotechnology. 2007;18(10):105401.
  • Wang Q, Varadan VK. Stability analysis of carbon nanotubes via continuum models. Smart Mater Struct. 2005;14(1):281.
  • Eltaher MA, Alshorbagy AE, Mahmoud FF. Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Appl Math Model. 2013;37(7):4787–4797.
  • Eltaher MA, Emam SA, Mahmoud FF. Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput. 2012;218(14):7406–7420.
  • Phadikar JK, Pradhan SC. Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci. 2010;49(3):492–499.
  • Lee H-L, Hsu J-C, Chang W-J. Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res Lett. 2010;5(11):1774.
  • Li X-F, Tang G-J, Shen Z-B, et al. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics. 2015;55:75–84.
  • De Rosa MA, Lippiello M, Martin HD. Free vibrations of a cantilevered SWCNT with distributed mass in the presence of nonlocal effect. Sci World J. 2015;2015.
  • Aydogdu M, Filiz S. Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E. 2011;43(6):1229–1234.
  • Murmu T, Adhikari S. Nonlocal frequency analysis of nanoscale biosensors. Sens Actuators A. 2012;173(1):41–48.
  • Duan WH, Wang CM, Zhang YY. Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys. 2007;101(2):024305.
  • Liang Y, Han Q. Prediction of nonlocal scale parameter for carbon nanotubes. Sci China Phys Mech Astron. 2012;55(9):1670–1678.
  • Ansari R, Rouhi H. Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. J Eng Mater Technol. 2012;134(1):011008.
  • Arash B, Ansari R. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E. 2010;42(8):2058–2064.
  • Tuna M, Kırca M. Unification of Eringen's nonlocal parameter through an optimization-based approach. Mech Adv Mater Struct. 2019. DOI:https://doi.org/10.1080/15376494.2019.1601312
  • Ke C, Espinosa HDNanoelectromechanical systems and modeling. In: Handbook of theoretical and computational nanotechnology. American Scientific Publishers. Vol. 1. 2005. p. 1–38.
  • Calleja M, Kosaka PM, San Paulo Á. Challenges for nanomechanical sensors in biological detection. Nanoscale. 2012;4(16):4925–4938.
  • Tamayo J, Kosaka PM, Ruz JJ, et al. Biosensors based on nanomechanical systems. Chem Soc Rev. 2013;42(3):1287–1311.
  • Lim T-C, editor. Nanosensors: theory and applications in industry, healthcare and defense. Boca Raton: CRC Press; 2016.
  • Lee JL, Lin CB. The magnetic viscous damping effect on the natural frequency of a beam plate subject to an in-plane magnetic field. J Appl Mech. 2010;77(1):011014.
  • Chen C, Ma M, Zhe Liu J, et al. Viscous damping of nanobeam resonators: humidity, thermal noise, and a paddling effect. J Appl Phys. 2011;110(3):034320.
  • Lei Y, Murmu T, Adhikari S, et al. Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur J Mech A Solids. 2013;42:125–136.
  • Lei Y, Adhikari S, Friswell MI. Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci. 2013;66:1–13.
  • Ansari R, Oskouie MF, Sadeghi F, et al. Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E. 2015;74:318–327.
  • Cajić M, Karličić D, Lazarević M. Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor Appl Mech. 2015;42(3):167–190.
  • Zhang DP, Lei Y, Wang CY, et al. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation. J Mech Sci Technol. 2017;31(1):87–98.
  • Zhang DP, Lei Y, Shen ZB. Vibration analysis of horn-shaped single-walled carbon nanotubes embedded in viscoelastic medium under a longitudinal magnetic field. Int J Mech Sci. 2016;118:219–230.
  • Zhang DP, Lei Y, Shen ZB. Free transverse vibration of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech. 2016;227(12):3657–3670.
  • Kaipio J, Somersalo E. Statistical and computational inverse problems. New York: Springer Science & Business Media; 2006.
  • Castello DA, Rochinha FA, Roitman N, et al. Constitutive parameter estimation of a viscoelastic model with internal variables. Mech Syst Signal Process. 2008;22(8):1840–1857.
  • Borges FCL, Castello DA, Magluta C, et al. An experimental assessment of internal variables constitutive models for viscoelastic materials. Mech Syst Signal Process. 2015;50:27–40.
  • Vasques CMA, Moreira RAS, Rodrigues JD. Viscoelastic damping technologies-part I: modeling and finite element implementation. J Adv Res Mech Eng. 2010;1(2).
  • Haario H, Laine M, Mira A, et al. DRAM: efficient adaptive MCMC. Stat Comput. 2006;16(4):339–354.
  • Christensen R. Theory of viscoelasticity. New York: Elsevier; 2012.
  • Wineman AS, Kumbakonam RR. Mechanical response of polymers: an introduction. Cambridge: Cambridge University Press; 2000.
  • Inman DJ. Engineering vibration. Upper Saddle River, NJ: Prentice Hall; 2001.
  • Reddy JN. An introduction to the finite element method. New York: McGraw-Hill; 1993.
  • Haario H, Saksman E, Tamminen J. An adaptive metropolis algorithm. Bernoulli. 2001;7(2):223–242.
  • Mira A. On metropolis-Hastings algorithms with delayed rejection. Metron. 2001;59(3-4):231–241.
  • Mellinger P, Döhler M, Mevel L. Variance estimation of modal parameters from output-only and input/output subspace-based system identification. J Sound Vib. 2016;379:1–27.
  • Souza M, Castello D, Roitman N, et al. Impact of damping models in damage identification. Shock Vib. 2019;2019:Article ID 4652328.
  • Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn. 1985;8(5):620–627.
  • Byeong HK, Stubbs N, Park T. A new method to extract modal parameters using output-only responses. J Sound Vib. 2005;282:215–230.
  • Overschee PV, De Moor BL. Subspace identification for linear systems, theory, implementation, applications. Dordrecht: Kluwer Academic Publishers; 1996.
  • Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–313.
  • Kolehmainen V, Tarvainen T, Arridge SR, et al. Marginalization of unisteresting distributed parameters in inverse problems – application to diffuse optical tomography. Int J Uncertain Quantif. 2011;1(1):1–7.
  • Muto M, Beck JL. Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. J Vib Control. 2008;14(1–2):7–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.