561
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of the air gap thermal resistance in the model of binary alloy solidification including the macrosegregation and the material shrinkage phenomena

, &
Pages 2002-2018 | Received 23 Feb 2020, Accepted 17 Feb 2021, Published online: 05 Mar 2021

References

  • Dehghan M, Abbaszadeh M. Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng. 2016;311:856–888.
  • Dehghan M, Abbaszadeh M. An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation. Eng Anal Bound Elem. 2018;92:244–256.
  • Abbaszadeh M, Dehghan M. Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique. Appl Numer Math. 2020;150:274–294.
  • Shirvan KM, Ellahi R, Mirzakhanlari S, et al. Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng. 2016;109:761–774.
  • Esfahani JA, Akbarzadeh M, Rashidi S, et al. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–1171.
  • Shirvan KM, Mamourian M, Mirzakhanlari S, et al. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.
  • Dehghan M, Yousefi SA, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term ia Bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng. 2013;21:500–523.
  • Rashedi K, Adibi H, Dehghan M. Determination of space-time-dependent heat source in a parabolic inverse problem via the Ritz-Galerkin technique. Inverse Probl Sci Eng. 2014;22:1077–1108.
  • Hetmaniok E. Solution of the inverse problem in solidification of binary alloy by applying the ACO algorithm. Inverse Probl Sci Eng. 2016;24:889–900.
  • Reddy SR, Dulikravich GS. Simultaneous determination of spatially varying thermal conductivity and specific heat using boundary temperature measurements. Inverse Probl Sci Eng. 2019;27:1635–1649.
  • Zielonka A, Hetmaniok E, Słota D. Reconstruction of the boundary condition in the binary alloy solidification problem with the macrosegregation and the material shrinkage phenomena taken into account. Heat Transfer Eng. 2021;42(3/4):308–318.
  • Nawrat A, Skorek J. Inverse finite element technique for identification of thermal resistance of gas-gap between the ingot and mould in continuous casting of metals. Inverse Probl Sci Eng. 2004;12(2):141–155.
  • Nawrat A, Skorek J, Sachajdak A. Identification of the heat fluxes and thermal resistance on the ingot-mould surface in continuous casting of metals. Inverse Probl Sci Eng. 2009;17(3):399–409.
  • Pickering EJ. Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques. ISIJ Int. 2013;53(6):935–949.
  • Nadella R, Eskin DG, Du Q, et al. Macrosegregation in direct-chill casting of aluminium alloys. Prog Mater Sci. 2008;53(3):421–480.
  • Zielonka A, Hetmaniok E, Słota D. Application of the immune algorithm IRM for solving the inverse problem of metal alloy solidification including the shrinkage phenomenon. Computer Meth Mater Sci. 2018;18(1):1–10.
  • Hetmaniok E, Hristov J, Słota D, et al. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification. Heat Mass Transfer. 2017;53(5):1657–1666.
  • Mochnacki B. Numerical modeling of solidification process. In: Zhu J, editor, Computational simulations and applications. INTECH; 2011. p. 513–542.
  • Mochnacki B, Suchy JS. Simplified models of macrosegregation. J Theor Appl Mech. 2006;44367–379
  • Özişik MN. Heat conduction. Wiley: New York; 1993.
  • Majchrzak E, Mochnacki B, Mendakiewicz J. Numerical model of binary alloys solidification basing on the one domain approach and the simple macrosegregation models. Arch Metall Mater. 2015;602431–2435.
  • Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput. 2009;214:108–132.
  • Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim. 2007;39:459–471.
  • Zielonka A, Hetmaniok E, Słota D. Inverse alloy solidification problem including the material shrinkage phenomenon solved by using the bee algorithm. Int Commun Heat Mass Transf. 2017;87:295–301.
  • Ning A-P, Zhang X-Y. Convergence analysis of artificial bee colony algorithm. Kongzhi Yu Juece/Control Decis. 2013;28:1554–1558.
  • Zhang P. Research on convergence of artificial bee colony algorithm based on crossover and consistency distribution-good point set. IOP Conference Series: Earth and Environmental Science; Vol. 446, 2020. p. 052007.
  • Liu W. A multistrategy optimization improved artificial bee colony algorithm. Scientific World J. 2014;2014:129483.
  • Bansal JC, Gopal A, Nagar AK. Analysing convergence, consistency, and trajectory of artificial bee colony algorithm. IEEE Access. 2018;6:73593–73602.
  • Jakšić Krüger T, Davidović T, Teodorović D, et al. The bee colony optimization algorithm and its convergence. Int J Bio-Inspired Comput. 2016;8:340–354.
  • Bansal JC, Gopal A, Nagar AK. Stability analysis of artificial bee colony optimization algorithm. Swarm Evol Comput. 2018;41:9–19.
  • Fainekos GE, Giannakoglou KC. Inverse design of airfoils based on a novel formulation of the ant colony optimization method. Inverse Probl Eng. 2003;11:21–38.
  • Carvalho AR, de Campos Velho HF, Stephany S, et al. Fuzzy ant colony optimization for estimating chlorophyll concentration profile in offshore sea water. Inverse Probl Sci Eng. 2008;16:705–715.
  • Lobato FS, Steffen Jr V, Silva Neto AJ. Estimation of space-dependent single scattering albedo in a radiative transfer problem using differential evolution. Inverse Probl Sci Eng. 2012;20:1043–1055.
  • Tam JH, Ong ZCh., Ismail Z, et al. Inverse identification of elastic properties of composite materials using hybrid GA-ACO-PSO algorithm. Inverse Probl Sci Eng. 2018;26:1432–1463.
  • Brociek R, Słota D, Król M, et al. Comparison of mathematical models with fractional derivative for the heat conduction inverse problem based on the measurements of temperature in porous aluminum. Int J Heat Mass Transf. 2019;143:118440.
  • Mochnacki B, Suchy JS. Numerical methods in computations of foundry processes. PFTA: Cracow; 1995.
  • Ryfa A, Białecki R. Retrieving the heat transfer coefficient for jet impingement from transient temperature measurements. Int J Heat Fluid Flow. 2011;32:1024–1035.