4,674
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cornering stiffness estimation using Levenberg–Marquardt approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2207-2238 | Received 08 Apr 2020, Accepted 08 Mar 2021, Published online: 04 May 2021

References

  • Jin X, Yin G, Chen N. Advanced estimation techniques for vehicle system dynamic state: A survey. Sensors. 2019;19(19):4289.
  • Viehweger M, Vaseur C, van Aalst S, et al. Vehicle state and tyre force estimation: demonstrations and guidelines. Vehicle Syst Dyn. 2020;59(5):675–702.
  • Cuma MU, Koroglu T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renewable and Sustainable Energy Reviews. 2015;42:517–531.
  • Wang Y, Geng K, Xu L, et al. Estimation of sideslip angle and tire cornering stiffness using fuzzy adaptive robust cubature kalman filter. IEEE Trans Syst Man Cybern: Syst. 2020: 1–12.
  • Alatorre AG, Charara A, Victorino A, et al. Sideslip estimation algorithm comparison between euler angles and quaternion approaches with black box vehicle model. In: 2018 IEEE 15th Int Workshop Adv Motion Control (AMC); IEEE. 2020;553–559. https://ieeexplore.ieee.org/document/8371153.
  • Liu Y, Ji X, Yang K, et al. Finite-time optimized robust control with adaptive state estimation algorithm for autonomous heavy vehicle. Mech Syst Signal Process. 2020;139:106616.
  • Ni J, Hu J, Xiang C. A review for design and dynamics control of unmanned ground vehicle. Proc Institution Mech Eng Part D: J Automobile Eng.2021;235(4):1084–1100.
  • Acosta M, Kanarachos S. Tire lateral force estimation and grip potential identification using neural networks, extended kalman filter, and recursive least squares. Neural Comput Appl. 2018;30(11):3445–3465.
  • Melzi S, Sabbioni E. On the vehicle sideslip angle estimation through neural networks: numerical and experimental results. Mech Syst Signal Process. 2011;25(6):2005–2019.
  • Van Eeden CJ, et al. The steering relationship between the first and second axles of a 6x6 off-road military vehicle [dissertation]. University of Pretoria; 2007.
  • Baffet G, Charara A, Lechner D. Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Eng Pract. 2009;17(11):1255–1264.
  • Jazar RN. Vehicle planar dynamics. In: Vehicle dynamics: Theory and application. Springer; 2008. p. 583–659.
  • Arndt M, Ding E, Massel T. Identification of cornering stiffness during lane change maneuvers. In: Proc 2004 IEEE Int Conf Control Appl. 2004;1:344–349.IEEE; 2004.
  • Xu S, Peng H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans Intell Transp Syst. 2019;21(1):48–58.
  • Hu C, Wang Z, Qin Y, et al. Lane keeping control of autonomous vehicles with prescribed performance considering the rollover prevention and input saturation. IEEE Trans Intell Transp Syst. 2020;21(7):3091–3103.
  • Lin F, Wang S, Zhao Y, et al. Research on autonomous vehicle path tracking control considering roll stability. Proc Institution Mech Eng Part D: J Automobile Eng. 2021;235(1):199–210.
  • Ataei M, Khajepour A, Jeon S. Model predictive rollover prevention for steer-by-wire vehicles with a new rollover index. Int J Control. 2020;93(1):140–155.
  • Ataei M, Khajepour A, Jeon S. Model predictive control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles. Vehicle Syst Dyn. 2020;58(1):49–73.
  • Cui Q, Ding R, Wei C, et al. Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope. Vehicle System Dynamics. 2020;1–25. https://www.tandfonline.com/doi/citedby/https://doi.org/10.1080/00423114.2020.1776344?scroll=top&needAccess=true.
  • Forte L, et al. Low-cost method of estimating vehicle sideslip and tire cornering stiffness using global positioning and inertial measurement [dissertation]. State University of New York at Buffalo; 2019.
  • Feng L, Chen W, Wu T, et al. An improved sensor system for wheel force detection with motion-force decoupling technique. Meas. 2018;119:205–217.
  • Aliganov OM. Inverse problems in the design, modeling and testing of engineering systems. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3); Oct 1991; Washington, DC. p. 495–512.
  • An SJ, Yi K, Jung G, et al. Desired yaw rate and steering control method during cornering for a six-wheeled vehicle. Int J Automot Technol. 2008;9(2):173–181.
  • O'Brien R, Kiriakidis K. A comparison of h/spl infin/with kalman filtering in vehicle state and parameter identification. In: 2006 Am Control Conf IEEE. 2006;3954–3959. https://ieeexplore.ieee.org/document/1657336.
  • Sierra C, Tseng E, Jain A, et al. Cornering stiffness estimation based on vehicle lateral dynamics. Vehicle Syst Dyn. 2006;44(sup1):24–38.
  • Davoodabadi I, Ramezani AA, Mahmoodi-k M, et al. Identification of tire forces using dual unscented kalman filter algorithm. Nonlinear Dyn. 2014;78(3):1907–1919.
  • Lee S, Nakano K, Ohori M. On-board identification of tyre cornering stiffness using dual kalman filter and gps. Vehicle Syst Dyn. 2015;53(4):437–448.
  • Bechtoff J, Isermann R. Cornering stiffness and sideslip angle estimation for integrated vehicle dynamics control. IFAC-PapersOnLine. 2016;49(11):297–304.
  • Di Biase F, Lenzo B, Timpone F. Vehicle sideslip angle estimation for a heavy-duty vehicle via extended kalman filter using a rational tyre model. IEEE Access. 2020;8:142120–142130.
  • Lundquist C, Schön TB. Recursive identification of cornering stiffness parameters for an enhanced single track model. IFAC Proc Volumes. 2009;42(10):1726–1731.
  • Nam K, Fujimoto H, Hori Y. Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Trans Vehicular Technol. 2012;61(5):1972–1985.
  • Singh KB, Arat MA, Taheri S. Literature review and fundamental approaches for vehicle and tire state estimation. Vehicle Syst Dyn. 2019;57(11):1643–1665.
  • Lopes A, Araújo RE. Vehicle lateral dynamic identification method based on adaptive algorithm. IEEE Open J Vehicular Technol. 2020;1:267–278.
  • Ghandour R, Victorino A, Doumiati M, et al. Tire/road friction coefficient estimation applied to road safety. In: 18th Mediterr Conf Control Autom, MED'10; IEEE. 2010;1485–1490. https://ieeexplore.ieee.org/document/5547840.
  • Ghandour R, Victorino A, Charara A, et al. A vehicle skid indicator based on maximum friction estimation. IFAC Proc Volumes. 2011;44(1):2272–2277.
  • El Hajjaji A, Chadli M, Oudghiri M, et al. Observer-based robust fuzzy control for vehicle lateral dynamics. In: 2006 Am Control Conf IEEE. 2006;4664–4669. https://ieeexplore.ieee.org/document/1657457.
  • Yu H, Wilamowski BM. Levenberg-marquardt training. Ind Electron Handb. 2011;5(12):1.
  • Lourakis MI, et al. A brief description of the levenberg-marquardt algorithm implemented by levmar. Found Res Technol. 2005;4(1):1–6.
  • North Atlantic Treaty Organization (NATO). NATO Dynamic Stability, AVTP 03-160 W; September 1991. p. 665–725.
  • Gunter DD, Bylsma WW, Edgar K, et al. Using modeling and simulation to evaluate stability and traction performance of a track-laying robotic vehicle. In: Enabling Technol Simul Sci IX. 2005;5805:66–73.International Society for Optics and Photonics.
  • Racelogic. IMU03 and YAW03 Inertial Sensor User Guide; December 11, 2014. Version 1.
  • Nirmal K, Sreejith A, Mathew J, et al. Noise modeling and analysis of an imu-based attitude sensor: improvement of performance by filtering and sensor fusion. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. 2016;9912:International Society for Optics and Photonics; 2016. p. 99126W.
  • Gillespie TD. Fundamentals of vehicle dynamics. 400; Warrendale (PA): Society of Automotive Engineers; 1992.
  • Vorotović GS, Rakicević BB, Mitić SR, et al. Determination of cornering stiffness through integration of a mathematical model and real vehicle exploitation parameters. FME Trans. 2013;41(1):66–71.
  • Stéphant J, Charara A, Meizel D, et al. Evaluation of a sliding mode observer for vehicle sideslip angle. Control Eng Pract. 2007;15(7):803–812.
  • Colaço MJ, Orlande HRB, Dulikravich GS, et al. Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng. 2006;28(1):1–24.
  • Orlande HRB. Inverse problems in heat transfer: new trends on solution methodologies and applications.ASME. J. Heat Transfer. 2012;134(3):031011(1)–031011(13).
  • Beck JV, Arnold KJ. Parameter estimation in engineering and science. New York: James Beck; 1977.
  • Ozisik MN, Orlande HRB. Inverse heat transfer: fundamentals and applications. New York: Taylor and Francis; 2000.
  • Grysa K. Inverse heat conduction problems. In: Vikhrenko VS, editor. Heat conduction. Chapter 1. Rijeka: IntechOpen; 2011. p. 20–22. https://doi.org/https://doi.org/10.5772/26575.
  • Luty W, Simiński P. An analysis of cornering stiffness of 14.00 r20 tire with run-flat insert. J KONES. 2008;15:295–304.
  • Tian Y, Lian Y, Tian C, et al. Sideslip angle and tire cornering stiffness estimations for four-in-wheel-motor-driven electric vehicles. In: 2019 Chin Control Conf (CCC) IEEE. 2019;2418–2423. https://ieeexplore.ieee.org/document/8866066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.