561
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An inverse problem to simulate the transport of chloride in concrete by time–space fractional diffusion model

, , , &
Pages 2429-2445 | Received 21 Aug 2020, Accepted 28 Mar 2021, Published online: 19 Apr 2021

References

  • Jau W-C, Tsay D-S. A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion. Cem Concr Res. 1998;28(10):1363–1371.
  • Angst U, Elsener B, Larsen CK, et al. Critical chloride content in reinforced concrete – a review. Cem Concr Res. 2009;39(12):1122–1138.
  • Alonso C, Andrade C, Castellote M, et al. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem Concr Res. 2000;30(7):1047–1055.
  • Liu Y, Teng Y, Lu G, et al. Experimental study on CO 2 diffusion in bulk n-decane and n-decane saturated porous media using micro-CT. Fluid Phase Equil. 2016;417:212–219.
  • Sun D, Englezos P. Storage of CO2 in a partially water saturated porous medium at gashydrate formation conditions. Int J Greenh Gas Control. 2014;25:1–8.
  • Baroghel-Bouny V, Wang X, Thiery M, et al. Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cem Concr Res. 2012;42(9):1207–1224.
  • Li D, Li L, Wang X. Chloride diffusion model for concrete in marine environment with considering binding effect. Mar Struct. 2019;66:44–51.
  • Glass G, Buenfeld N. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Sci. 2000;42(2):329–344.
  • Samson E, Marchand J. Numerical solution of the extended Nernst–Planck model. J Colloid Interface Sci. 1999;215(1):1–8.
  • Jensen O, Hansen P, Coats A, et al. Chloride ingress in cement paste and mortar. Cem Concr Res. 1999;29(9):1497–1504.
  • Page CL, Vennesland Ø. Pore solution composition and chloride binding capacity of silica fume cement pastes. Mat Constr. 1983;16(1):19–25.
  • Loser R, Lothenbach B, Leemann A, et al. Chloride resistance of concrete and its binding capacity–comparison between experimental results and thermodynamic modeling. Cem Concr Compos. 2010;32(1):34–42.
  • Geng J, Easterbrook D, Li L, et al. The stability of bound chlorides in cement paste with sulfate attack. Cem Concr Res. 2015;68:211–222.
  • Li D, Wang X, Li L. An analytical solution for chloride diffusion in concrete with considering binding effect. Ocean Eng. 2019;191:106549.
  • Song Q, Yu R, Shui Z, et al. Physical and chemical coupling effect of metakaolin induced chloride trapping capacity variation for Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Constr Build Mater. 2019;223:765–774.
  • Mohammed MK, Dawson AR, Thom NH. Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture. Constr Build Mater. 2014;72:83–93.
  • Auriault J, Lewandowska J. Non-gaussian diffusion modeling in composite porous media by homogenization: tail effect. Trans Porous Media. 1995;21(1):47–70.
  • Kosakowski G. Anomalous transport of colloids and solutes in a shear zone. J Contam Hydrol. 2004;72(1):23–46.
  • Gimmi T, Flühler H, Studer B, et al. Transport of volatile chlorinated hydrocarbons in unsaturated aggregated media. Water Air Soil Pollut. 1993;68(1):291–305.
  • Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 1981;321(1):225–257.
  • Sokolov IM, Klafter J. Field-induced dispersion in subdiffusion. Phys Rev Lett. 2006;97(14):140602.
  • Chang A, Sun H, Zheng C, et al. A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Physica A. 2018;502:356–369.
  • Magin RL, Ingo C, Colon-Perez L, et al. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Micropor Mesopor Mat. 2013;178:39–43.
  • Nicholson C. Diffusion and related transportmechanisms in brain tissue. Rep Prog Phys. 2001;64(7):815–884.
  • Suzuki A, Fomin SA, Chugunov VA, et al. Fractional diffusion modeling of heat transfer in porous and fractured media. Int J Heat Mass Transf. 2016;103:611–618.
  • Obembe AD, Hossain ME, Abu-Khamsin SA. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J Pet Sci Eng. 2017;152:391–405.
  • Zhou HW, Yang S. Fractional derivative approach to non-Darcian flow in porous media. J Hydrol. 2018;566:910–918.
  • Jiang X, Xu M, Qi H. The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes. Nonlinear Anal Real World Appl. 2010;11(1):262–269.
  • Zhokh A, Strizhak P. Macroscale modeling the methanol anomalous transport in the porous pellet using the time-fractional diffusion and fractional brownian motion: A model comparison. Commun Nonlinear Sci Numer Simul. 2019;79:104922.
  • Benson DA, Meerschaert MM, Revielle J. Fractional calculus in hydrologic modeling: a numerical perspective. Adv Water Resour. 2013;51:479–497. 35th Year Anniversary Issue.
  • Sun H, Wang Y, Qian J, et al. An investigation on the fractional derivative model in characterizing sodium chloride transport in a single fracture. Eur Phys J Plus. 2019;134(9):440.
  • Wei S, Chen W, Zhang J. Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete. Eur J Environ Civ Eng. 2015;21(3):319–331.
  • Nawaz R, Khattak A, Akbar M, et al. Solution of fractional-order integro-differential equations using optimal homotopy asymptotic method. J Therm Anal Calor. 2020;6. DOI:https://doi.org/10.1007/s10973-020-09935-x.
  • Akbar M, Nawaz R, Ahsan S, et al. New approach to approximate the solution of system of fractional order Volterra integro-differential equations. Res Phys. 2020;19:103453.
  • Abbaszadeh M, Mehdi D. Numerical and analytical investigations for solving the inverse tempered fractional diffusion equation via interpolating element-free Galerkin (IEFG) method. J Therm Anal Calor. 2020;143:1917–1933.
  • Abbaszadeh M. Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett. 2019;88:179–185.
  • Abbaszadeh M, Dehghan M. Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation. Appl Math Comput. 2021;392:125718.
  • Abbaszadeh M, Dehghan M, Navon LM. A POD reduced-order model based on spectral Galerkin method for solving the space-fractional Gray-Scott model with error estimate. Appl Math Comput. 2020;1:1–24.
  • Zahara E, Kao YT. Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl. 2009;36(2):3880–3886.
  • Vakil Baghmisheh MT, Peimani M, Sadeghi MH, et al. A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams. Appl Soft Comput. 2012;12(8):2217–2226.
  • Mesbahi T, Khenfri F, Rizoug N, et al. Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle Swarm-Nelder-Mead (PSO-NM) optimization algorithm. Electr Power Syst Res. 2016;131:195–204.
  • Begambre O, Laier J. A hybrid particle swarm optimization – simplex algorithm (PSOS) for structural damage identification. Adv Eng Softw. 2009;40(9):883–891.
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press; San Diego; 1999.
  • Samko SG, Kilbas AA, Marichev OI, et al. Fractional integrals and derivatives. Vol. 1, Yverdon Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers; 1993.
  • Liu F, Zhuang P, Anh V, et al. Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Appl Math Comput. 2007;191(1):12–20.
  • Yu B, Jiang X. A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall. Adv Math Phys. 2013;2013:1–8.
  • Glass GK, Buenfeld NR. The presentation of the chloride threshold level for corrosion of steel in concrete. Corros Sci. 1997;39(5):1001–1013.
  • Li J, Shao W. The effect of chloride binding on the predicted service life of RC pipe piles exposed to marine environments. Ocean Eng. 2014;88:55–62.
  • Chen R, Liu F, Anh V. Numerical methods and analysis for a multi-term time–space variable-order fractional advection–diffusion equations and applications. J Comput Appl Math. 2018;352:437–452.
  • Liu F, Zhuang P, Burrage K. Numerical methods and analysis for a class of fractional advection–dispersion models. Comput Math Appl. 2012;64(10):2990–3007.
  • Fan SS, Liang Y, Zahara E. Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Eng Optimiz. 2004;36(4):401–418.
  • Liu F, Burrage K. Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput Math Appl. 2011;62(3):822–833.
  • Qin S, Liu F, Turner I, et al. Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J Comput Appl Math. 2017;319:308–319.
  • Qiao C, Ni W, Wang Q, et al. Chloride diffusion and wicking in concrete exposed to NaCl and mgCl 2 solutions. J Mater Civ Eng. 2018;30(3):04018015.
  • Liu F, Burrage K, Hamilton NA. Some novel techniques of parameter estimation for dynamical models in biological systems. IMA J Appl Math. 2013;78(2):235–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.