991
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of airborne pollutant sources within a slot ventilated porous enclosure depending on backward model and downwind scheme

, , , , , & ORCID Icon show all
Pages 166-191 | Received 31 Jan 2021, Accepted 04 Dec 2021, Published online: 07 Feb 2022

References

  • Tikhnovo AN, Arsenin VY. Solutions of ill-posed problems. Washington: Halsted press; 1977.
  • Atmadja J, Bagtzoglou AC. State of the art report on mathematical methods for groundwater pollution source identification. Environ Forensics. 2001;2(2):205–214. DOI:10.1006/enfo.2001.0055
  • Alifanov OM. Inverse heat transfer problems. New York: Springer-Verlag; 1994.
  • Sun NZ. Inverse problems in groundwater modeling. Boston: Kluwer Academic; 1994.
  • Selimefendigil F, Ztop HF. Effects of local curvature and magnetic field on forced convection in a layered partly porous channel with area expansion. Int J Mech Sci. 2020;179:105696. DOI:10.1016/j.ijmecsci.2020.105696
  • Selimefendigil F, Ztop HF. Combined effects of double rotating cones and magnetic field on the mixed convection of nanofluid in a porous 3D U-bend. Int Commun Heat Mass Transfer. 2020;116:104703. DOI:10.1016/j.icheatmasstransfer.2020.104703
  • Selimefendigil F, Ztop HF. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int Commun Heat Mass Transfer. 2020;113:104551. DOI:10.1016/j.icheatmasstransfer.2020.104551
  • Selimefendigil F, Ztop HF. Thermal management and modeling of forced convection and Entropy Generation in a vented cavity by Simultaneous Use of a curved porous layer and magnetic field. Entropy . 2021;23(2):152. DOI:10.3390/e23020152
  • Hussai S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transfer. 2017;114:1054–1066. DOI:10.1016/j.ijheatmasstransfer
  • Ahmed SE. Mixed convection in thermally anisotropic non-Darcy porous medium in double lid-driven cavity using Bejan's heatlines. Alexandria Eng J. 2016;55(1):299–309. DOI:10.1016/j.aej.2015.07.016
  • Hussai S, Ahmed SE, Saleem F. Impact of periodic magnetic field on Entropy Generation and mixed convection. J Thermophys Heat Transfer. 2018;32(4):999–1012. DOI:10.2514/1.T5430
  • Frankel JI. Residual-Minimization least-squares method for inverse heat conduction. Comput Math Appl. 1996;32(1):117–130. DOI:10.1016/0898-1221(96)00130-7
  • Ala NK, Domenico PA. Inverse analytical techniques applied to coincident contaminant distributions at otis air force base, massachusetts. Ground Water. 1992;30(2):212–218. DOI:10.1111/j.1745-6584.1992.tb01793.x
  • Alapati S, Kabala ZJ. Recovering the release history of a groundwater contaminant using a non-linear least-squares method. Hydrol Process. 2000;14(6):1003–1016. DOI:10.1002/(SICI)1099-1085(20000430)14:6<1003::AID-HYP981>3.0.CO;2-W
  • Gorelick SM, Evans BE, Remson I. Identifying sources of groundwater pollution: an optimization approach. Water Resour Res. 1983;19(7):779–790. DOI:10.1029/WR019i003p00779
  • Wagner BJ. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. J Hydrol. 1992;135(1-4):275–303. DOI:10.1016/0022-1694(92)90092-A
  • Mahar PS, Datta B. Identification of pollution sources in transient groundwater systems. Water Res Man. 2000;14(3):209–227. DOI:10.1023/A:1026527901213
  • Mahar PS, Datta B. Optimal identification of ground-water pollution sources and parameter estimation. J Water Res Pl. 2001;127(1):20–29.
  • Prud’homme M, Nguyen TH. Solution of inverse free convection problems by conjugate gradient method: effects of Rayleigh number. Int J Heat Mass Transfer. 2001;44(11):2011–2027. DOI:10.1016/S0017-9310(00)00266-0
  • Zhao FY, Liu D, Tang GF. Inverse determination of boundary heat fluxes in a porous enclosure dynamically coupled with thermal transport. Chem Eng Sci. 2009;64(7):1390–1403. DOI:10.1016/j.ces.2008.12.005
  • Sohn MD, Reynolds P, Singh N, et al. Rapidly locating and characterizing pollutant releases in buildings. J Air Waste Manage Assoc. 2002;52(12):1422–1432. DOI:10.1080/10473289.2002.10470869
  • Arvelo J, Brandt A, Roger RP. An enhancement multi-zone model and its application to optimum placement of CBW sensors. ASHRAE Trans. 2002;108(2):818–825.
  • Liu D, Zhao FY, Yang H, et al. Probability adjoint identification of airborne pollutant sources depending on one sensor in a ventilated enclosure with conjugate heat and species transports. Int J Heat Mass Transfer. 2016;102:919–933. DOI:10.1016/j.ijheatmasstransfer.2016.06.023
  • Liu X, Zhai Z. Location identification for indoor instantaneous point contaminant source by probability-based inverse computational fluid dynamics modeling. Indoor Air. 2008;18(1):2–11. DOI:10.1111/j.1600-0668.2007.00499.x
  • Liu D, Zhao FY, Wang HQ. History recovery and source identification of multiple gaseous contaminants releasing with thermal effects in an indoor environment. Int J Heat Mass Transfer. 2012;55(1):422–435. DOI:10.1016/j.ijheatmasstransfer.2011.09.041
  • Zhang TF, Chen Q. Identification of contaminant sources in enclosed environments by inverse CFD modeling. Indoor Air. 2007;17(3):167–177. DOI:10.1111/j.1600-0668.2006.00452.x
  • Liu D, Zhao FY, Wang HQ, et al. History source identification of airborne pollutant dispersions in a slot ventilated building enclosure. Int J Therm Sci. 2013;64:81–92. DOI:10.1016/j.ijthermalsci.2012.08.005
  • Lattes R, Lions JL. The method of quasi-reversibility, applications to partial differential equations. New York: Elsevier; 1969.
  • Skaggs TH, Kabala ZJ. Recovering the history of a groundwater contaminant plume: method of quasi-reversibility. Water Resour Res. 1995;31(2):2669–2673. DOI:10.1029/95WR02383
  • Bagtzogolou AC, Atmadja J. Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: application to contaminant plume spatial distribution recovery. Water Resour Res. 2003;39(2):1011–1014. DOI:10.1029/2001WR001021
  • Zhao FY, Liu D, Tang L. Direct and inverse mixed convections in an enclosure with ventilation ports. Int J Heat Mass Transfer. 2009;52(19):4400–4412. DOI:10.1016/j.ijheatmasstransfer.2009.03.017
  • Zhao FY, Liu D, Tang GF. Natural convection in a porous enclosure with a partial heating and salting element. Int J Therm Sci. 2008;47(5):569–583. DOI:10.1016/j.ijthermalsci.2007.04.006
  • Alkam MK, Al-Nimr MA, Hamdan MO. On forced convection in channels partially filled with porous substrates. Heat Mass Transf. 2002;38(4-5):337–342. DOI:10.1007/s002310000177
  • Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transfer. 1999;42(13):2465–2481. DOI:10.1016/S0017-9310(98)00227-0
  • Patankar SV. Numerical heat transfer and fluid flow. Washington: Hemisphere Publishing Co.; 1980.